Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование вычисление результатов

    Фракции летучей золы между прямыми / и // для салициловой кислоты и прямыми / и III для гуминовой кислоты составляют фракцию Л1—Ре. Прямая И пересекает кривую титрования системы салициловая кислота — летучая зола в точке D, а прямая III пересекает кривую титрования гуминовой кислоты с золой в точке Е. Водорастворимые металлы, растворимость которых отображена на этом отрезке графика, прочно соединены с АЬОз и РегОз и поэтому начинают растворяться только после А1 и Ре. Если бы все или почти все кислотные группы на поверхности гуминовой кислоты были в орго-положении относительно фенольных групп, то прямая III слилась бы с прямой II. Но поскольку лишь сравнительно небольшая часть групп гуминовой кислоты хорошо образует комплексы, чтобы перевести в раствор слаборастворимые оксиды А1 и Ре, необходимо больше гуминовой кислоты. Основываясь на предположении, что в точке Е только АР+ и Ре + связаны в комплекс [по уравнению (22.1)] и что они не участвуют в реакциях по другим механизмам, получаем, что процентное содержание кислотных групп, вступивших в реакцию комплексообразования, составляет около 10%. Из сравнения вычисленного для прямой III значения концентрации ионов гидроксила, высвобожденных после растворения всех оксидов металлов (0,25), со значением концентрации кислоты (0,51) видно, что почти половина кислотных групп протонизирована. Этот результат подтверждается почти горизонтальным наклоном кривой титрования гуминовой кислоты и золы около точки Е. [c.275]


    Поскольку аналитика чаще всего интересует равновесная концентрация простых металло-ионов в присутствии комплексо-образователя, возникает естественное желание упростить расчеты. Это упрощение при решении вопроса о начальной концентрации координируемых частиц, обеспечивающих заданную равновесную концентрацию простых металло-ионов, основано на следующих соображениях. В присутствии избытка координируемых частиц, как это видно из схем равновесия, концентрация комплексного соединения, отвечающего высшей ступени комплексообразования, тем выше, чем меньше его константа нестойкости и чем больше избыточная концентрация присоединяемых частиц. Поскольку при решении вопроса об избытке комплексообразователя важно обеспечить концентрацию простых металло-ионов, не превышающую некоторого заданного значения, возникает вопрос, нельзя ли при соответствующих расчетах считать, что в этих условиях образуется только один комплекс, включающий наибольшее возможное число адденд Для решения этого вопроса рассмотрим пример упрощенного вычисления и сравним полученные результаты с данными полного расчета равновесия. [c.115]

    Этой формулой и воспользуемся для вычисления концентрации ионов серебра и потенциала серебряного электрода в процессе титрования. Предположим, что к 100 мл 0,1 н. раствора цианида калия добавлено 0,5 мл 1 н. раствора нитрата серебра. При этом в результате комплексообразования концентрация цианид-иона понизится до [ N 1 = 0,09 н., а концентрация образовавшегося комплексного иона будет IAg( N)2 l = 0,005 н. Воспользовавшись уравнением константы нестойкости, можно вычислить концентрацию свободных ионов серебра  [c.389]

    При вычислениях, результаты которых представлены в табл. 14, предполагалось, что отклонения от идеальности из-за взаимодействий, не связанных с комплексообразованием, пренебрежимо малы, хотя существуют методы, позволяющие учитывать большие отклонения [125], [c.59]

    Понятие о канале применимо к колшлексам тиомочевины, как и комплексам мочевины. Однако вследствие большего размера атома серы в тио-мочевине сравнительно с размерами кислорода в мочевине канал имеет большее поперечное сечение. Постоянные ячеек комплексов тиомочевины, бо-видимому, меняются в зависимости от природы комплексообразующей молекулы, в результате чего будут изменяться и размеры канала. Опубликованные данные рентгеноструктурных анализов комплексов тиомочевины недостаточны для надежного вычисления размеров капала. Метод, использованный Шисслером [15] для измерения молекулярных размеров моделей углеводородов, способных и не способных к комплексообразованию, по-видимому, наиболее пригоден для измерения поперечных размеров каналов комплексов тиомочевины, которые, вероятно, должны быть порядка 5,8 [c.215]


    Первое слагаемое характеризует вклад в образование донорно-акцепторной связи электростатических взаимодействий, второе - ковалентных. Уравнение (1.5) содержит четыре неизвестных параметра. Для их оценки в качестве стандартного акцептора выбрали молекулу иода. Для нее приняли равной = Сд = 1. Вычисление других параметров проводится, исходя из допущения, что д = а Хд Сд = йЛд, где Хд-дипольный момент донора, Лд- рефракция донора, а иЬ- коэффициенты. В результате подстановки доступных экспериментальных значений получают уравнение с двумя неизвестными. Рассматривая ряд комплексов, получают систему уравнений. Решение каждой пары уравнений дает значения а и й, которые затем усредняются. Исходя из этих средних величин рассчитывают параметры доноров д и Сд. Значения параметров модели Драго для ряда растворителей представлены в табл. 1.6. Для близких по строению комплексов можно, используя величины и С, рассчитать теплоты образования. Расхождения расчетных и экспериментальных величин связывают со стери-ческими эффектами, влиянием я-взаимодействий, перестройкой компонентов при комплексообразовании. Необходимо отметить, что в рассмотренном подходе не учитывается сольватационная составляющая, а все умозаключения проводятся без учета влияния растворителя, как, если бы реакция протекала в газовой фазе. Поэтому дальнейшая модификация уравнения привела к включению в состав рассматриваемых также и параметров неспецифической сольватации [18]  [c.16]

    В предыдущих разделах было рассмотрено влияние комплексообразования на растворимость, когда лигандом является анион соли. Добавкой инородных лигандов осадок можно перевести в раствор. В aTOM случае нет нужды в привлечении каких-либо новых принципов, и вычисления можно проводить так же, как и в двух предыдущих разделах. Если комплексы с инородными лигандами гораздо устойчивее комплексов с анионами соли, то концентрациями последних можно пренебречь, и уравнения материального баланса существенно упрощаются. В качестве примера, представляющего большую практическую важность, рассмотрим растворимость бромида серебра в тиосульфате натрия. Этот процесс лежит в основе операции фиксирования фотоснимков в фотографии, в результате которой с пленки удаляется бромид серебра, не подвергшийся действию света. [c.247]

    Обратимся вначале к общим выражениям для математических функций, применяющихся в описании равновесия одноядерных комплексов, и приведем некоторые интересные результаты для случаев комплексообразования с участием одного или двух лигандов. Затем кратко обсудим задачу расчета констант равновесия по экспериментальным данным, а в последнем разделе рассмотрим способ упрощения вычислений — использование диаграмм или номограмм, и обсудим, какие типы функций могут быть представлены таким образом. [c.270]

    При исследовании простых систем, характеризующихся образованием одного комплекса, методы вычисления констант не представляют трудностей. Этому, вопросу посвящено большое количество исследований, в которых подробно разбираются различные варианты обработки результатов и вычисления констант устойчивости комплексов [60—62]. Значительные трудности возникают при образовании в системе нескольких комплексов. Для вычисления констант устойчивости сложных систем при наличии ступенчатого комплексообразования широко используют специальные расчетные функции, [c.65]

    Нивелировать влияние на результат анализа вариантности значения произведения растворимости осадка, образования комплексов с переменной стехиометрией и флуктуации крутизны электродной функции удается, применяя способ титрования до определенного значения потенциала [А.с. 1054779 СССР, МКИ G 01 N 27/46, 1983] [68, 69]. Положительный эффект достигается за счет того, что для расчета концентрации анализируемого иона используются результаты титрования, полученные в условиях значительного избытка титруемого иона, превосходящего равновесную концентрацию этого иона, вычисленную из значения произведения растворимости осадка или из значения константы комплексообразования образующегося при титровании соединения. При этом зависимость потенциала электрода от концентрации титруемого иона измеряется в оптимальном интерВ але, где флуктуация крутизны электродной функции минимальна. Высокие значения остаточной концентрации титруемого иона делают пренебрежимо малым вклад в его суммарную концентрацию растворимости осадка и образования комплексных соединений, стехиометрия которых отличается от стехиометрии основного продукта реакции титрования. Примером такого способа анализа может служить титрование фторидов щелочных металлов и аммония солью лантана до остаточной концентрации фторида, равной (4 -5) -10 Л1 [c.93]

    Экспериментальные результаты вместе с известными значениями суммарной концентрации металла я лиганда (см и Сь) несут информацию, необходимую для вычисления состава и устойчивости комплексов, образующихся в равновесной системе. Когда зу-чаются ступенчатые реакции комплексообразования, существе Н1Ное значение приобретает использование адекватного способа математической обработки учитываться должны все результаты, но данные, измеренные с большими погрешностями, должны быть отброшены. В этом отношении наилучшим решением будет применение численных методов, если, конечно, имеется надежная программа для электронно-вычислительной машины дл>я этих целей удобны также графические методы. [c.137]


    Решение задачи оптимизации использования молекулярных взаимодействий компонентов смеси путем выбора соответствующей неподвижной фазы (адсорбента или жидкости, молекулярного сита) может быть найдено лишь на основе теории межмолекулярных взаимодействий в газах и жидкостях и между газами и жидкостями и твердым адсорбентом. Эта теория основывается на результатах изучения геометрии и химической природы молекул газа, молекул жидкости и поверхности твердого тела. Она представляет собою молекулярную теорию, поскольку ее задачей в области хроматографии является объяснение связи с молекулярными параметрами и вычисление термодинамических констант адсорбционного или распределительного равновесия (например, констант Генри для нулевых проб), определяющих селективность. Отсюда ясно значение молекулярно-статистических расчетов для развития молекулярных теорий адсорбции или растворения п их приложений к хроматографии, поскольку именно статистическая термодинамика указывает правильную количественную связь констант термодинамического равновесия с нотенциальпыми функциями межмолекуляриого взаимодействия. Однако по мере усложнения адсорбционной системы использование статистической термодинамики для количественных расчетов удерн иваемых объемов встречает затруднения, особенно в случае специфических взаимодействий и неоднородных поверхностей. Вместе с тем увеличение энергии и характеристичности взаимодействия влечет за собой возможность получения новой важной информации о специфическом молекулярном взаимодействии при использовании комплекса спектроскопических методов. Это помогает наполнить даваемые хроматографическими и термодинамическими исследованиями полуэмпи-рические и феноменологические связи между различными параметрами эвристическим содер/канием в смысле возможного приближения к молекулярным основам взаимодействия и селективности. Сюда относится,, в частности, использование регулирования специфхмеских взаимодействий, в частности электростатических взаимодействий динольных и квад-рупольных молекул с поверхностями ионных кристаллов и с поверхностными функциональными группами, использование и регулирование водородной связи и вообще взаимодействий донорно-акценторного типа и процессов комплексообразования. [c.34]

    Разработанная к 1956—1957 гг. теория гидратации ионов в водных растворах электролитов [42 ] показала, что величины времени пребывания молекул воды вблизи ионов на несколько порядков меньше, лем это следует из зна ний полной энергии взаимодействия ионов с водой. Для ионов однозарядных в одномолярном растворе Ti составляет несколько наносекунд и десятки — для двухзарядных. До недавнего времени не было экспериментальных данных, которые позволили бы сопоставить теоретические величины Ti и таким образом подтвердить или уточнить теорию — такие данные были впервые получены с помощью ЯМР. Сначала посредством протонного резонанса в работе Шулери и Олдера [100] был дан некоторый прогноз величины Ti одно- и двухзарядных ионов < 10 сек. Затем в ряде других работ, также по резонансу протонов, эта оценка была подтверждена — см. [64]. Наконец вполне однозначные данные с помощьн> ЯМР 0 были получены Конником и Поулсоном [55] и Свифт и Конником [123], Результаты этих работ указывают уже на количественное соответствие вычисленных Самойловым [42 ] величин с экспериментальными. Кроме того, в работе Таубе и др. [1251 было показано, что Xi невелики даже в случае ионов с большой плотностью заряда (для А1 , Ga иВе Ti 10 4-сек). Таким образом, результаты исследований с помощью ЯМР-спек-троскопии в целом хорошо подтверждают современную теорию гидратации, выводы которой, по-видимому, представляют большое значение для понимания процессов комплексообразования в растворах [22f]. [c.257]

    Более надежные результаты можно получить, сравнивая коэффициенты активности соответствуюпцнх солей. Коэффициенты активности, полученные для концентрированных растворов, обычно несколько выше коэффициентов, вычисленных на основании теории Дебая — Хюккеля. Это связано в первую очередь с уменьшением концентрации свободной воды, обусловленным ростом доли молекул воды, образующих первичные гидратные оболочки ионов [116, 117]. Поэтому коэффициенты активности солей галогенов должны возрастать при замене 1 па Г", т, е. с увеличением степени гидратации анионов таков обычный порядок. Однако комплексообразование должно приводить к снижению коэффициентов активности солей независимо от того, обусловлено оно химическим взаимодействием, образованием электростатических ионных пар или имеющим совершенно другую природу образованием нонных пар под влиянием структуры воды. При этом чем сильнее комплексообразование, тем больше обусловленное им снижение коэффициентов активности. Образование электростатических ионных пар наиболее характерно [c.225]

    Щелочноземельные металлы, входящие в состав нафтенатов, оказывают практически равное влияние на кинетику накопления гидропероксидов при окислении ж-ДИПБ в присутствии каталитической системы. Например, в результате замены магния на стронций происходит незначительное уменьшение начальной скорости накопления гидропероксидов и несколько уменьшается их максимальный выход. При температуре окисления 120 °С скорости накопления составляют 5,0-и 4,4-моль-л , а максимальная концентрация гидропероксидов в оксидате — 5,6 и 5,5 моль/л соответственно для нафтенатов магния и стронция. Некоторое уменьшение каталитической активности при замене магния на стронций в катализаторе хорошо согласуется с имеющимися различиями в склонности этих металлов к комплексообразованию с о-фенантролином [60]. Эффективные энергии активации реакции накопления гидропероксидов в присутствий обеих каталитических систем, вычисленные из аррениусовской температурной зависимости их максимальных скоростей накопления, оказались одинаковыми и равными (68,8 2,4) кДж/моль. Полученные значения эффективной энергии активации меньше, чем в случае реакций, катализированных одним нафтенатом щелочноземельного металла [180]. [c.96]

    Из результатов, приведенных в табл. 1 и 2, следует, что вычисленные и экспериментальные значения коэффициентов распределения находятся в хорошем согласии. Это значит, что сведения о комплексообразовании различных ионов в водном растворе, полученные методом ионного обмена, соответствуют действительности и могут быть использованы для нредсказания поведения металлов в экстракционных системах с трибу-тилфосфатом. По-видимому, нет оснований сомневаться, что использование различных данных о комплексообразовании будет успешным при описании всех экстракционных систем, в которых образуется один экстракционный комплекс. [c.79]

    Проведение экспериментов по исследованию процесса комплексообразования лиганда (ов) с центром (ами) связывания в условиях равновесия. Полученные, данные целесообразно представить в координатах Скэтчарда и Хилла. Это позволяет а) установить наличие кооперативных взаимодействий в системе или двух (или более) независимых типов центров связывания б) учитывая результаты экспериментов 2 и 3, выбрать схему процесса комплексообразования в) определить далее значения равновесной (ых) констант (ы) ассоциации и общей (их) концентрации (ий) центров связывания с последующим вычислением констант скорости ассоциации и диссоциации, используя результаты экспериментов 2 и 3 г) сравнить полученную (ые) равновесную (ые) константу (ы) с соответствующей (ими) константой (ами), определенной (ыми) только из кинетических экспериментов 2 и 3. Совпадение значе-чий этих констант может служить одним из критериев правильности выбора схемы процесса. [c.315]


Смотреть страницы где упоминается термин Комплексообразование вычисление результатов: [c.46]    [c.65]    [c.384]    [c.375]    [c.260]   
Справочник по аналитической химии (1979) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте