Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспрозий соединения

    До сих пор окончательно не выяснено существование соединений четырехвалентного диспрозия (см. пунктирную черту). Для шести элементов — N(3, Рт, Ос1, Но. Ег и Ей — характерна единственная форма валентности, равная 3. [c.59]

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]


    Практическое применение диспрозия, естественно, пока ограниченно. В небольших количествах диспрозий и некоторые его соединения входят в состав фосфоров, магнитных сплавов, специальных стекол. Специалисты считают, что в будуш ем этот элемент может быть использован в радиоэлектронике и химической промышленности (в качестве катализатора). [c.151]

    Химические связи, образуемые этими сильно электроположительными элементами, имеют в основном ионный характер, и их химические свойства определяются размером иона М +. Здесь же будет рассмотрен и иттрий, который расположен над лантаном в III группе и образует такой же трехзарядный катион с оболочкой инертного газа. Атомный и ионный радиусы иттрия близки к соответствующим значениям для тербия и диспрозия (этот факт объясняется лантанидным сжатием , которое будет рассмотрено в дальнейшем). Иттрий обычно встречается в природе вместе с лантанидами, и его соединения напоминают соединения тербия(1П) и диспро-зпя(1П). [c.501]

    Этим методом получали богатые концентраты отдельных элементов благодаря различию в растворимости (рис. 67). В головной фракции концентрируются 5т, Ей, Од, в средней — ТЬ, Оу, Y и Но, более тяжелые РЗЭ — в маточных растворах. Дробной кристаллизацией удается получить следующие фракции Ег— , Ти—УЬ, УЬ—Ьи. Для выделения и концентрирования главным образом эрбия, гольмия, диспрозия, тербия и гадолиния используется различие в растворимости диметилфосфатов [35]. В связи с тем что диметил-фосфаты имеют отрицательный температурный коэффициент растворимости в воде, наименее растворимые соединения, в частности большую часть соединений иттрия, отделяют при 40—50° С. Оставшийся иттрий при дальнейшей кристаллизации концентрируется [c.298]

    Сверх 75 перечисленных, между простыми телами считаются европий, гадолиний, тербий, тулий, гольмий, диспрозий и несколько других. Но их свойства и соединения, по великой редкости в природе, еще мало известны и даже самостоятельность некоторых из них окончательно не установлена. [c.362]

    Однако изучение свойств элементов № 93—100 показало, что такой вывод был бы неправилен. По мере перехода от урана к заурановым элементам устойчивость высших валентностей не возрастает, а падает наиболее устойчивым становится трехвалентное состояние. Кюрий, берклий, калифорний, эйнштейний и фермий оказываются полными аналогами соответствующих элементов — гадолиния, тербия, диспрозия, гольмия, эрбия. Кристаллографические исследования показали тесную близость кристаллических структур окислов и многих солей элементов от тория до америция. Весьма схожими оказались спектры поглощения водных растворов соединений элементов, следующих за лантаном и за актинием, а также магнитные свойства ионов этих элементов (рис. 15, 16). Тесное родство лантанидов и актинидов явствует и из приводившихся выше данных об их ионообменном разде- [c.300]


    ДИСПРОЗИЙ (Dysprosium, греч. dis-prositos — труднодоступный) Dy — химический элемент III группы б-го периода периодической системы элементов Д. И. Менделеева, п. н, 66, ат. м. 162, 50, относится к семейству лантаноидов В химических соединениях Д. трехвалентен. Д. открыт в 1886 г. П. Ле-кок де Буабодраном. Д. имеет очень большое сечение захвата тепловых нейтронов и исключительные магнитные свойства. Д. наиболее парамагнитный из всех веществ. [c.90]

    Поскольку катион Се + обладает большим значением удельного заряда, его комплексообразовательная способность несколько выше других лантаноидов в степени окисления +4. При этом высшая степень окисления более стабильна по сравнению с соединениями первого порядка. Так, для Се (+4) известны довольно устойчивые комплексы [Се(С204)з1 и [Се(МОз)б1 Из галогенидных комплексов наиболее устойчивы фторидные [SPJ (Се и Рг), [ЭР,] (Се, Рг, ТЬ), а для диспрозия известен только sjfDyP -]. [c.177]

    Электротехника, радиотехника и электроника. Редкоземельные металлы находят применение как газопоглотители (геттеры) в вакуумной технике и как эмиттеры. Их соединения весьма перспективны для изготовления катодов в электронных приборах. Используются также в счетно-решающих машинах, телевизионной и авиационной технике и радиотехнике. Особенно перспективны в этом отношении бориды и гексабориды РЗЭ [12]. Марганцевые соединения РЗЭ типа МпЬпОд — хорошие сегнетоэлектрики. Окись неодима применяется в электронных приборах в качестве диэлектрика с малым коэффициентом линейного расширения. Хороший диэлектрик СеОа в смеси с ТЮа- Смесь СеОа со 5гО используется в радиокерамических материалах. Широкое применение нашли соединения РЗЭ как активаторы или как основа для люминофоров в люминесцентных лампах и ртутных лампах высокого давления [19]. Составная часть люминофоров, применяющихся в лампах для освещения,— диспрозий [20]. [c.88]

    Днспнро[2.1.3.4]додекан 4/799 Диспрозий 2/156 3/957, 958 5/937 алюминиевый гранат 2/222 галогениды 2/157 4/437, 1003 нитрат 2/157 оксиды 2/157 4/586 органические соединения 2/157, 1147 [c.598]

    Белый мягкий пластичный металл. Во влажном воздухе покрывается оксидно-гидроксидной пленкой. Пассивируется в холодной воде не реагирует со щелочами, гидратом аммиака. Сильный восстановитель реагирует с горячей водой, кислотами, хлором, серой. Ион Оу имеет светло-желтую окраску с зеленоватым оттенком. Соединения диспрозия по химическим свойствам подобны соединениям лантана. Получение — термическое восстановление ОугОз кальцием, электролиз раствора ОуСЬ- [c.332]

    Гидроксиды лантана, иттрия [3], празеодима, неодима, самария, гадолиния, тербия, диспрозия, эрбия и иттербия, а также Ат(ОН)з [4] кристаллизуются с образованием типпчпо ионных структур, в которых каждый атом металла окружен девятью ионами ОН", а каждый ион ОН —тремя ионами V +. Такую же структуру, изображенную на рис. 9.8 (разд. 9.9.3), имеет описанное ранее соединение U b в этой структуре координационный полиэдр атома металла имеет форму трехшапочной тригональной призмы. Методом нейтронографии [5] были определены позиции атомов дейтерия в соединении La(OD)a. На рис. 14.2 все атомы (включая дейтерий) лежат на высоте с/4 или Зс/4 над или под плоскостью чертежа (с = 3,86 А). Из [c.356]

    Карбиды типа Ьп-гСз. Полуторные карбиды получены для всех рзэ, но их структуры исследованы еще не полностью. Во всяком случае, известно, что тип решетки изменяется при переходе от диспрозия к эрбию. Часть рзэ образует соединения с ОЦК-решеткой (см. приложение 17), а остальные изоморфны карбиду иттрия, причем карбид гольмия, по-видимому, может одновременно образовать обе фазы. Полуторные карбиды цериевых земель показывают наличие значительной ойласти твердых растворов в сторону избытка металла (для Ьа, например, до ЬаСх з), поэтому в таблице приведены граничные величины для интервала устойчивости кристаллической фазы. Единственным исключением с этой точки зрения является церий. Кроме того, аномальное уплотнение решетки его [c.40]

    Однако встречаются и совсем другие толкования. Взять, к примеру, такой элемент, как диспрозий. Его первое специфическое соединение, трехокись, было обнаружено Буабодраном в том же самом 1886 г., когда Муассан выделил фтор. В элементном виде диспрозий впервые выделил Урбен в 1905 г. Казалось бы, по аналогии со фтором, именно 1905 г. должен быЯ значиться в хронологических табтицах. Однако, как мы знаем, подавляющее большинство авторов датой открытия диспрозия считают 1886 г. [c.3]

    Для обнаружения неорганических и органических веществ в качественном анализе используют собственную люминесценцию. Из неорганических соединений в растворенном состоянии люминесцируют в ультрафиолетовом свете соли тяжелых металлов Т1+, 5п2+, 5Ьз+, РЬ +, 1п + и др. Наиболее ярко люминесцируют трехзарядные ионы лантаноидов цериевой группы самария, еб ропия, гадолиния, тербия, диспрозия. [c.63]

    Важные данные о зависимости прочности комплексов р. з. э. от состава и строения комплексообразующего реагента вытекают из количественного физико-химического изучения равновесий, характеризуемых константами устойчивости комплексов. Для этой цели в наших исследованиях с А. М. Со-рочан были использованы методы [8—10] потенциометрии, растворимости, статического ионного обмена и ионообменной хроматографии. Результаты этих работ в сочетании с литературными данными по константам устойчивости не только полностью согласуются с ранее сформулированными закономерностями, но и позволяют получить новый дополнительный материал. Заслуживают упоминания особо высокая прочность комплексов р. з. э. с пятичленными циклами, что имеет место у многоосновных карбоновых кислот с карбоксильными группами, расположенными у соседних атомов углерода (например, лимонная кислота), и у комплексонов — соединений с ими-ноуксусными группировками — N — СНз — СООН, в которых атомы р. з. э. вступают в координационную связь с атомами кислорода и азота. Этим, а также значительным числом пятичленных циклов объясняется, в частности, предельно высокая устойчивость комплексов р. з. э. с этилен- и циклогексан-диаминтетрауксусными кислотами. Уместно отметить, что тонкие геометрические различия комплексонатов р. з. э. объясняют ход зависимости устойчивости их от порядкового номера элемента. По-видимому, геометрия комплексов р. 3. э. с ЭДТА и ЦДТА такова, что от лантана к лютецию в связи с лантанидным сжатием монотонно падает напряженность пятичленных колец, что и объясняет монотонное возрастание прочности соответствующих комплексов. Наоборот, у соединений, например, с оксиэтилиминодиуксус-ной кислотой минимальное напряжение цикла падает на средние элементы (иттрий, диспрозий и пр.), вследствие чего прочность комплексонатов тяжелых иттриевых и особенно легких цериевых элементов оказывается более низкой. [c.277]


    Как отмечалось ранее [323, 340], добавление сернистых соединений к циклогексану при его дегидрировании на АПК ведет к появлению в продуктах реакции метилциклопентана. Однако введение диспрозия в алюмопла-тиновый катализатор уменьшает выход метилциклопентана. Это объясняется основной природой промотора, что снижает кислотность носителя, блокируя стадию дегидроизомеризации циклогексана в метилциклопентан [357, [c.134]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Так, этот эффект нашел применение в радиоактивационном методе определения следов иттрия, диспрозия, гольмия, самария и лантана в окиси европия (чувствительность 10 —10 %). Основная масса европия отделялась путем его восстановления до Ей(II) металлическим цинком в редукторе Джонса. Редуктор соединен с хроматографической колонкой, наполненной фторопластом-4 с Д2ЭГФК. Ей(II) количественно проходит через колонку, тогда как следы всех- других редкоземельных элементов в степени окисления 3-f- задерживались на колонке. Результаты анализа высокочистой окиси европия представлены в табл. 2. [c.434]

    Селениды. Подобно сульфидам, могут быть получены селениды (и теллуриды) РЗЭ такого же состава однако данных об этих соединениях пока еще немного. В монографии [614] приводятся сведения (по литературным данным) о некоторых селенидах, в частности полуторных типа МегЗез. Они нерастворимы в холодной и кипящей воде, кислотами разлагаются с выделением селеноводорода. По внешнему виду это интенсивно окрашенные вещества селенид лантана кирпичнокрасный, неодима и иттербия темно-фиолетовый, диспрозия темно-синий, самария и иттрия серо-черный, скандия краснофиолетовый, Получены также моноселениды и монотеллуриды [c.288]

    Такова в общих чертах структура селенидов и теллуридов хрома, сел пидов железа и никеля и, по-видимому, сульфидов диспрозия и иттербия и теллурида тантала (табл. 27). Для каждого соединения [c.163]


Смотреть страницы где упоминается термин Диспрозий соединения: [c.577]    [c.176]    [c.50]    [c.353]    [c.17]    [c.19]    [c.353]    [c.439]    [c.241]    [c.107]    [c.383]    [c.208]    [c.294]    [c.384]    [c.316]    [c.320]    [c.339]    [c.8]    [c.102]    [c.120]    [c.177]    [c.122]    [c.304]    [c.448]   
Химический энциклопедический словарь (1983) -- [ c.501 , c.502 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.501 , c.502 ]




ПОИСК





Смотрите так же термины и статьи:

Диспрозий



© 2024 chem21.info Реклама на сайте