Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидроизомеризация

    Соединения азота, переходящие в условиях риформинга в аммиак, подавляют кислотные функции катализатора, что приводит к снижению скоростей реакций изомеризации, гидрокрекинга и дегидроциклизации парафинов, дегидроизомеризации нафтенов ряда циклопентана. Конечный результат отравления катализатора соединениями азота — снижение выхода и концентрации ароматических углеводородов, снижение октанового числа бензина риформинга. Отравление азотистыми соединениями обратимо. [c.122]


    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]

    Дегидроизомеризация пятичленных нафтенов  [c.2]

    Более направленно Сз-дегидроциклизация протекает в присутствии Pt/ , особенно если наиболее длинная углеродная цепочка исходного алкана состоит только из пяти С-атомов. Показано [23, 28—33], что на Pt/ во всех случаях образовывались именно те циклопентано-вые углеводороды, которые и должны были получиться без изомеризации углеродного скелета. В виде вторичной реакции обычно во всех случаях наблюдалась незначительная (3—4%) дегидроизомеризация алкил- и [c.193]

    Имеющаяся множественность протекающих реакций обычно сводится к нескольким групповым реакциям дегидрирование 6-членных нафтеновых углеводородов, дегидроизомеризация 5-членных нафтеновых углеводородов, дегидроциклизация и изомеризация парафиновых углеводородов, гидрокрекинг нафтеновых и парафиновых углеводородов. [c.36]

    Целью данной работы было исследование вопроса оптимизации кислотных свойств полиметаллического катализатора при использовании дифференцированного режима его хлорирования. Известно, что в каждой ступени риформинга осуществляется протекание определённых химических реакций. Так, в 1-ой ступени происходит, в основном, дегидрирование нафтеновых углеводородов, во 2-ой - изомеризация парафинов и дегидроизомеризация нафтенов, а также дегидроциклизация парафинов, заканчивающаяся в 3-ей ступени, где значительное развитие получают и реакции гидрокрекинга. [c.38]

    Установлено, что на катализаторе СГ-ЗП происходит образование ароматических углеводородов за счет реакций дегидрирования и дегидроизомеризации нафтеновых углеводородов, а также дегидроциклизации парафиновых углеводородов с высокой селективностью протекает реакция [c.5]

    Смит и соавт. [180] исследовали процессы гидрогенолиза и изомеризации метилциклопентана над бифункциональной Р1/А120з. в качестве ингибирующих добавок, действующих на активные центры катализатора, применяли тиофен и пропиламин. В зависимости от условий процесс можно направить либо в сторону гидрогенолиза с образованием алканов, либо в сторону образования бензола (дегидроизомеризация). При этом каталитические свойства Р1 и А1гОз проявлялись либо в индивидуальном, либо в совместном действии. Неселективный гидрогенолиз свидетельствует, по мнению авторов [180], о ионном механизме реакции. [c.138]


    Другой важной реакцией является дегидроизомеризация циклопен-тановых углеводородов в ароматические, которая протекает на бифункциональных катализаторах с участием металлических и кислотных активных центров и лимитируется последними [c.137]

    Скорость и селективность ароматизации циклопентанов значительно ниже, чем соответствующих циклогексановых углеводородов. В условиях риформинга конкурирующей реакцией является гидрогенолиз циклопентанового кольца. Скорость дегидроизомеризации пятичленных нафтеновых углеводородов увеличивается с ростом молекулярной массы и температуры процесса и уменьшением парциального давления водорода. [c.137]

    Дегидроизомеризация пятичленных нафтенов /СНз [c.5]

    Дегидроизомеризация метилциклопентана явилась предметом многих исследований, которые нашли отражение в обзорных статьях [5, 18] и обсуждены в работе [33]. Значительно меньше данных [c.18]

    Изучалась [2] дегидроизомеризация алкилциклопентанов С,—Сд на алюмоплатиновом катализаторе в мягких условиях (350 °С 0,5 МПа), при которых реакция протекает достаточно селективно а состав и строение получаемых ароматических углеводородов зависят от состава и строения исходных алкилциклопентанов (табл. 1.3). [c.19]

    Скорости дегидроизомеризации зависят от характера замеш,аю-щих алкильных групп и их взаимного расположения в алкилциклопентанах. Вероятно эти зависимости играют определенную ролы и для дегидроизомеризации алкилциклопентанов при более высоких температурах ( 500 °С), свойственных процессу каталитического риформинга. Однако вследствие интенсивной изомеризации углеводородов в условиях этого процесса, состав образующихся алкилбензолов значительно меньше зависит от состава и строения исходных алкилциклопентанов. Например, если при дегидроизомеризации и-пропилциклопентана при 350 °С, получают только, этилбензол (табл. 1.3), то в случае осуществления реакции при 480 °С, наряду с этим углеводородом образуются также изомеры ксилола [34]. [c.20]

    Поскольку промышленные катализаторы риформинга обычно содержат от 0,3 до 0,6% платины, следует прежде всего отметить, что изменение ее содержания в этих пределах практически не оказывает влияния на скорость дегидроизомеризации метилциклопентана [41 ]. Данные, полученные при использовании в качестве носителя фторированного оксида алюминия (0,77% Р), показали, что степень пре-, вращения метилциклопентана в бензол увеличивается только при повышении содержания платины в катализаторе от 0,012 до 0,075% [25]. По-видимому, при большем содержании платины устанавливается равновесная концентрация метилциклопентена и стадия дегидрирования метилциклопентана не влияет на скорость образования бензола.  [c.22]

    Реакция дегидроизомеризации метилциклопентана может быть схематически представлена следующим образом  [c.23]

    Сведения об относительных скоростях дегидроизомеризации пятичленных нафтенов весьма ограничены. Данные, приведенные в таблице 1.3, хотя и получены в.условиях, отличающихся от применяемых в каталитическом риформинге, все же дают основание полагать, что в этом процессе скорости дегидроизомеризации пятичленных нафтенов С,—Сю не должны сильно различаться. [c.23]

    Значительные расхождения обнаруживают данные о влиянии температуры на скорость реакции дегидроизомеризации метилциклопентана на катализаторе Р1/А1, 0з. Так, по результатам [37] энергия [c.23]

    В то же время, при слабой активности кислотной функции скорость реакций с участием иона карбония, включая дегидроизомеризацию и дегидроциклизацию, недостаточно велика, что, в свою очередь, должно вести к увеличению образования углеводородов -С и к снижению выхода риформата, т.е. к снижению селективности поцесса. Активность кислотной функции катализатора риформинга в основном определяется наличием на его поверхности хлора. При этом вполне закономерно ставится вопрос какое же конкретное содержание хлора должно поддерживаться на поверхности катализаторов риформинга, как алюмоплатиновых, так и новых би- и полиметаллических. Проведенные нами исследования показали, что для алюмоплатинового катализатора АП-64 оптимальное содержание хлора находится в пределах 0,55-0,65 % мае. Потеря хлора ниже 0,55 % приводит к значительному снижению активности и стабильности катализатора, при превышении оптимума наблюдается резкое увеличение гидрокрекинга углеводородов, падение выхода риформата, быстрое закоксовывание катализатора. Для полиметаллических платино-рений-кадмиевых катализаторов (типа КР-104, КР-108, КР-110) оптимальное содержание хлора, как показали наши исследования, находится на уровне 0,9-1,0 % мае. Регулирование содержания хлора на поверхности катализатора во время его эксплуатации служит технологическим приёмом, использование которого, наряду с обычными параметрами процесса, делает возможным получение высоких выходов высокооктанового бензина или ароматических углеводородов. [c.38]

    При дегидроизомеризации метилциклопентана на платиновых катализаторах риформинга молярный выход бензола достигает 60— 70% [21, 38]. Скорость раскрытия (гидрогенолиза) циклопентано-вого кольца прп наличии двух или трех замещающих метильных, групп значительно меньше скорости той же реакции для метилциклопентана [42]. Поэтому следует полагать, что селективность превращения более высокомолекулярных алкилциклопентанов в бензольные углеводороды выше селективности превращение метилциклопентана. [c.24]


    Первая из этих реакций — каталитическая ароматизация, получившая также название С -дегидроциклизация, исходя из числа атомов углерода, входящих в образующийся цикл. Вторая реакция, в результате которой получаются пятичленные нафтены, известна как Св-дегидроциклизация. В условиях каталитического риформинга Сь-дегидроциклизация также ведет к превращению парафинов в ароматические углеводороды, так как образующиеся циклопентаны подвергаются дегидроизомеризации. [c.27]

    С понижением давления селективность реакции дегидроизомеризации метилциклопентана в бензол закономерно повышается. Соответственно понижается удельный вес параллельной реакции гидро- [c.145]

    В работах Го и сотр. [245—247] исследовались механизмы гидрогенолиза и изомеризации циклоалканов и алканов на металлах и их сплавах. Изучены [245, 246] превращения 1,1,3-триметилцикло-пентана в присутствии пленок Р1, Рс1, Со, Ре, N1, КЬ и XV. Относительные скорости деметилирования с образованием гел -диметилцик-лопентана и метана зависят от металла и температуры. Р1 и Рс1 оказались наилучшими катализаторами дегидроизомеризации в арены, Р1 является наиболее селективным катализатором образования ксилолов Рс и КЬ (как и Ре) дают смесь продуктов с преобладанием толуола, для N1 характерно образование низших (Сг—Се) алканов, для Со — образование метана. Полагают, что образование ксилолов происходит путем расширения пятичленного кольца при четвертичном углеродном атоме с образованием а,а,у-триадсорбирован-ных соединений и адсорбированного трехчленного цикла в качестве промежуточных продуктов. [c.168]

    В последнее десятилетие механизм и селективность протекания реакции Сз-дегидроциклизации углеводородов в присутствии различных платиновых катализаторов изучались многими исследователями. Оказалось, что на алюмоплатиновых катализаторах в условиях платфор-минга [41—43], а также в импульсном режиме [13, 44— 49] Сз-дегидроциклизация алканов проходит достаточно успешно, хотя и осложняется рядом других реакций (Сб-дегидроциклизация, дегидроизомеризация и пр.). [c.193]

    В период гидрооблагораживания сырья на комбинированном катализаторе был проведен хроматографический анализ сырья и гидрогенизата на >фоматографе Цвет в ЦЗЛ НКНПК. Полученный анализ показал некоторое изменение углеводородного состава. Содержание ароматических углеводородов в гидрогенизате по сравнению с содержанием в сырье увеличилось на 0,4-0,88 %, а нафтеновых углеводородов снизилось на 0,5-1,66 %. Количество парафиновых углеводородов в гидрогенизате увеличилось на 0,78 %. Следовательно, на комбинированном катализаторе ГК-35 и ГКБ -ЗМ при выше описанном технологическом режиме идет процесс дегидрирования и дегидроизомеризации нафтеновых углеводородов (об этом свидетельствует сниж ение содержания нафтеновых углеводородов на 1,66 %). Процессы дегидрирования и дегидроизомеризации идут почти одинаково (образуется ароматических углеводородов 0,88 % и парафиновых 0,78 %). [c.100]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    На рис. 5.1 и 5.2 представлены фафические показатели, характеризующие процесс переработки бензиновой фракции 62-140 С на катализаторе СГ-ЗП. Анализ полученных данных свидетельствует о сложной взаимосвязи между технологическими параметрами процесса и глубиной протекания основных реакций (дегидрирования и дегидроизомеризации нафтеновых углеводородов и гидрокрекинга нормальных парафиновых углеводородов), что, в свою очередь, определяет выход стабильного бензина и его качество. Например, выход и антидетонационные свойства стабильного катализата при осуществлении процесса при температуре 420 и 460°С с объемными скоростями подачи сырья соответственно 2 и 5 час практически одинаково, в то время как выход ароматических углеводородов при темперагуре 460 С выще на 11% мае. Таким образом, регулируя параметры процесса и тем самым изменяя глубину протекания основных реакций процесса, можно в достаточно щироких пределах изменить качество получаемого катализата, в частности, содержатше ароматических углеводородов и октановое число. [c.127]

    Дегидроизомеризация метилциклопентана в бензол на ряде Pt-катализаторов изучена в интервале температур 250—500 °С и атмосферном давлении [50]. Показано, что Pt, нанесенная на пористое стекло или на предварительно обработанный кислотой гель кремневой кислоты, проя>вляет достаточно высокую активность в реакции ароматизации метилциклопентана. Полагают [50], что ароматизации метилциклопентана предшеству- [c.195]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    В основном процесс каталитического рис юрмирования идет с поглощением теплоты, при этом основными реакциями, определяющими отрицательный тепловой эффект, являются реакции дегидрлрой.ания и дегидроизомеризации нафтенов и дегидроцикли- [c.129]

    Первые три реакции, представленные в табл. 6.3, протекают очень быстро, в результате чего достигаются равновесные концентрации продуктов. При этом концентрация олефинов довольно мала, так как их образование термодинамически невыгодно. Однако олефины образуются на промежуточной стадии реакции изомеризации парафинов. Скорость реакции изомеризации пятичленных алкилнафтенов в шестичленные в десять раз меньше, благодаря дегидрированию, изомеризации до шестичленных циклопарафинов и последующего быстрого их дегидрирования до ароматических. Комбинацию реакций изомеризации и дегидрирования называют дегидроизомеризацией. Дегидроизомеризация алкилциклопентанов является важной реакцией в процессе риформинга, так как содержание этих соединений довольно велико и отношение концентраций алкилциклопентанов и алкилциклогекса- [c.141]

    Влияние рения на стабильность платинового катализатора риформинга было изучено при давлении, близком к атмосферному, в двух модельных реакциях дегидрирования циклогексана и дегидроизомеризации метилциклопентана [231 1. Первая из этих реакций характеризует активность металлической фазы, поскольку реакция идет на металлических центрах катализатора. Вторая реакция протекает по бифункциональному механизму, но лимитирующей является стддия (изомеризация метилциклопентена в циклогексен), которая проходит на кислотных центрах носителя. Следовательно, [c.102]

    Таким образом, если дегидроизомеризацию метилциклопентана лроводить при обычных температурах каталитического риформинга (л 500 С), достаточно полное превращение углеводорода в бензол может быть достигнуто при значении рн,, не превышающем 1,5 МПа. Эти условия в равной мере благоприятны для дегидроизомеризации других пятичленных нафтенов. [c.21]

    Кинетика и механизм реакции. Кинетические закономерности реакции дегидроизомеризации метилциклопентана были изучены как на алюмоплатиновом, так и на алюмоплатинорениевом катализато- рах [33, 36—38 ], не было обнаружено существенных различий в протекании реакции на этих катализаторах [38]. [c.21]

    Кинетика реакции дегидроизомеризации метилциклопентана была изучена при 470 —515 °С и рн, 0,6—4,0 МПа на алюмоплатиновых катализаторах, сод ержавщих 0,3% и 0,6% на хлорированной У АиОз 133 ]. Суммарная скорость образования бензола и циклогексана г выражается уравнением  [c.22]

    На металлическом компоненте платинового катализатора риформинга происходит только дегидрирование метилциклопентана до соответствующих циклоолефинов 140]. Превращение же метилцйкло-пентена в бензол достигается в результате совместного действия металлического и кислотного компонентовг Поэтому исследование влияния каждого, из компонентов катализатора на скорость реакции дегидроизомеризации МЦПа может выявить, какая из стадий этой реакции — лимитирующая.  [c.22]

    Влияние кислотной функции катализатора можно проследить, изменяя в нем содержание галогена. При том содержании платины в катализаторе (0,3%), при котором стадия дегидрирования метилциклопентана не является лимитирующей, последовательное увеличение содержания фтора от 0,05 до 1,0% приводит к повышению выхода бензола в 2,8 раза [25 ]. Это означает, что определяет скорость дегидроизомеризации метилциклопентана стадия изомеризации метилциклопентена в циклогенсен, протекающая на кислотных участ- [c.22]

    Селективность. Селективность ре-2,3 2,7 акции дегидроизомеризации не за-Ри ,мПа от значения Рмцпа. но зна- [c.24]

    В работе (391 была установлена зависимость относительной скорости раскрытия кольца (г ) и дегидроизомеризации (r ) метилциклопентана от Рн, при осуществлении реакции на осерненном алюмоплатиновом катализаторе (0,36% Р1/А120з)  [c.27]

    Из этого выражения следует, что с увеличением рн, селективность реакции дегидроизомеризации метилциклопентана в бензол ) л.доджца ухудшаться, что согласуется с приведенными выше данными. [c.27]

    Механизм ароматизации парафинов [42, 50—54]. Ароматизация парафинов на бифункциональных алюмоплатиновых катализаторах в условиях ри рминга — процесс сложный, включающий ряд последовательно и параллельно идущих реакций. Наряду с реакциями Се- и Сд-дегидроциклизации, катализируемыми платиной, протекают также реакции циклизации под действием кислотного компонента катализатора. Как уже упоминалось, образующиеся цикло пентаны превращаются в ароматические углеводороды, подвергаясь дегидроизомеризации. [c.32]


Смотреть страницы где упоминается термин Дегидроизомеризация: [c.178]    [c.139]    [c.28]    [c.17]    [c.101]    [c.130]    [c.21]    [c.24]    [c.103]   
Смотреть главы в:

Каталитический риформинг бензинов -> Дегидроизомеризация


Каталитические свойства веществ том 1 (1968) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте