Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иттрий хлорид

    Определите степень протолиза (%) в 0,05М растворах хлоридов скандия (III), иттрия (III) и лантана (III) при 25° С. Исходя из этого, выведите заключение о протолитических свойствах катиона Ас  [c.294]

    К растворам хлоридов, полученным в предыдущем опыте, добавьте по нескольку капель раствора фторида аммония. В пробирках с солями иттрия и лантана образуются осадки составьте уравнения реакций. Скандий не образует осадка, так как получается растворимое в воде комплексное соединение (координационное число иона Зс равно 6). Составьте уравнение реакции. Как назвать полученное комплексное соединение  [c.138]


    Иттрий хлорид, 6-водный УОз-бНгО [c.232]

    Гидроокиси. Гидроокиси типа У(ОН)з и Ьп(ОН)з выпадают в виде аморфных осадков от действия солей иттрия и РЗЭ на водные растворы аммиака или щелочей. pH осаждения У из раствора нитрата 7,39, хлорида 6,78, сульфата 6,8 и ацетата 6,83. pH осаждения гидроокисей лантана и лантаноидов в соответствии с их порядковыми номерами и ионными радиусами лежит между 6,0 у Ьи и 8,0 у Ьа. Заметно отличается от них pH осаждения Се(ОН)4 (0,7—1,0), что используется при разделении РЗЭ. Методы получения гидроокисей описаны в литературе довольно подробно. Но физико-химические свойства и состав гидроокисей, полученных в различных условиях, изучены недостаточно. В [31] описаны реакции образования гидроокисей некоторых РЗЭ. Методами физико-химического анализа — растворимости, измерения [c.55]

    Помимо этого, скандий, иттрий и лантан восстанавливают (при высокой температуре) из их хлоридов или фторидов наиболее активными металлами (калием и кальцием). Например  [c.406]

    Соли скандия, иттрия и лантана бесцветны, из водных растворов кристаллизуются в виде аквасоединений. Хлориды, нитраты и ацетаты этих металлов растворимы в воде, гидролизуются в незначительной степени. [c.407]

    Температуры плавления карбидов иттрия соответственно 1950, 1800 и 2300°. Карбиды лантаноидов — желтые кристаллические вещества. Во влажном воздухе неустойчивы разлагаются водой, образуя углеводороды, главным образом ацетилен. При температуре красного каления под действием хлора, фтора, сероводорода, азота превращаются соответственно в хлориды, фториды, сульфиды, нитриды 90, 112]. Разбавленные кислоты и щелочи легко разлагают карбиды РЗЭ. [c.75]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]


    Для получения безводных фторидов РЗЭ и иттрия можно обезвоживать гидратированные фториды при нагревании в вакууме или в токе НР. Фториды в этом случае получают из хлоридов, выделенных упариванием из раствора. Для этого хлориды обрабатывают 48%-ной плавиковой кислотой полученные фториды после высушивания при 100—150° на воздухе обезвоживают при 300° в вакууме либо при 600° в токе НР. Процессы при этом можно представить так  [c.141]

    В 3 микропробирки налейте по 3 капли растворов хлоридов скандия, иттрия и лантана и добавьте на холоду по 3 капли раствора карбоната натрия выпадают белые осадки карбонатов. Составьте уравнения реакций. [c.138]

    Нами разработаны и уточнены способы и оптимальные условия процесса получения безводных хлоридов лантана, церия, празеодима, неодима, самария, европия, диспрозия, эрбия, иттербия, лютеция, а также иттрия и скандия. [c.125]

    Титрованию мешают р. з. э., иттрий и скандий. В их присутствии получается одна резко выраженная конечная точка, соответствующая, по-видимому, суммарному содержанию этих элементов. Кроме того, определению мешают Ре, В1, РЬ, А - и Н2, катионы, образующие комплексы с оксалат-ионом, а также анионы, реагирующие с торием фториды, фосфаты, тар-траты и большие количества сульфата. Хлориды, нитраты, [c.54]

    Фридрих Велер (1800—1882) —немецкий химик, с 1831 г. профессор Технической школы в Касселе, с 1836 г. до конца жизни профессор Геттингенского университета. Открыл циановую кислоту, оказавшуюся тождественной но составу гремучей кислоте. Получил мочевину иа неорганического соединения (цианата аммония). Исследовал совместно с Либихолг мочевую кислоту и ее производные. Впервые получил алюминий нагреванием хлорида алюминия с калием. Аналогичным способом получил бериллий и иттрий. Открыл метод получения фосфора, кремния в свободном состоянии и ого соединений. Осуществил получение карбида кальц1гя и ацетилена. Автор учебных руководств по органической и неорганический химии. Избран членом-корресаондентом Петербургской Академи наук (1853). [c.157]

    Они осаждаются при добавлении сульфатов щелочных металлов или аммония в растворы сульфатов, хлоридов или нитратов иттрия, лантана и лантаноидов. Двойные сульфаты элементов цериевой подгруппы практически не растворяются в насыщенных растворах сульфатов аммония, натрия и калия. Двойные сульфаты РЗЭ иттриевой подгруппы значительно растворяются, тербиевые РЗЭ занимают промежуточное положение. Различие в растворимости двойных сульфатов используется для предварительного разделения лантаноидов на две подгруппы. [c.59]

    Молибдаты Ьп2(МоС>4)з получают, сплавляя хлориды иттрия, РЗЭ с молибдатами щелочных металлов или обезвоживая кристаллогидраты молибдатов нагреванием до плавления. Могут быть получены также сплавлением ЬпаОз с М0О3 при 850—900 . Из расплавленного состояния в зависимости от условий охлаждения и плавки кристаллизуются в ромбической или тетрагональной модификации. Температура плавления молибдатов от 973° у Се до 1347° у У. Молибдаты состава Ьп2(Мо04)з-ЛН2О образуются при действии раствора молибдата натрия на растворы хлоридов РЗЭ. [c.66]

    Более удобным для получения редкоземельных металлов иттриевой подгруппы считается электролиз с жидким катодом. Рекомендуется применять кадмий и цинк. Электролизом на жидком кадмиевом катоде из хлоридов РЗЭ в смеси с Na l и КС1 получены сплавы Gd- d (6% Gd), Dy- d (7,5% Dy), Eu- d (3,75% Eu). Для получения иттрия в качестве катода использовали сплав Mg- d (25—30% d). Электролизом получен сплав с 24% У. Очистку от кадмия и Mg производили вакуумной дистилляцией. Аналогичным путем были получены сплавы Рг и Sm, однако полностью отделить Mg от Sm не удается и при вакуумной дистилляции [152]. Применение цинка в качестве материала жидкого катода дает возможность получить сплавы с 10% Y и Sm и 13% Gd. Электролиз при 800° и плотности тока 2 А/см дает возможность получить 95%-ный выход по току для Y и Gd и 65 %-ный для Sm с извлечением указанных элементов на 90—95%. Из полученных сплавов цинк отгоняют вакуумной дистилляцией (10 мм рт. ст.) при 900°. Предуссматривается улавливание Zn на 98% с возвращением его в процесс. Получаемые таким способом металлы в виде высокореакционной губки хранят под слоем парафина [152]. [c.148]

    Галогениды и нитраты редкоземельных элементов и иттрия очень хорошо растворяются в воде. Их различные гидраты можно получить выпариванием растворов до начала кристаллизации при охлаждении. Нитраты при прокаливании разлагаются до окислов, но водные хлориды при прокаливании плавятся и гидролизуются, переходя в основные хлориды (например, ЬаОС1). Безвод- [c.35]

    Спектрофотометрические методы определения содержания отдельных РЗЭ основаны на использовании спектров поглошения растворов солей РЗЭ — хлоридов, нитратов, перхлоратов. Из всех элементов Периодической системы Д. И. Менделеева только у солей РЗЭ (и солей актинидов) наблюдаются довольно узкие полосы погло-шений с острыми максимумами в инфракрасной, видимой и ультрафиолетовой областях спектра. Узкополосные спектры поглошения аква-ионов лантаноидов объясняются особенностями строения их оболочек, причем спектр поглошения каждого РЗЭ имеет характерный, только ему присущий вид (рис. 22), так как отражает электронные переходы на оболочке 4/. Исключение составляют ионы иттрия, лантана и лютеция, которые не обладают собственным поглошением в растворах их солей. Спектры поглошения РЗЭ используют для определения содержания отдельных РЗЭ с помощью спектрофотометров или фотоэлектроколориметров, снабженных ртутной лампой СВД-120А (ФЭК-56), дающей линейчатый спектр. [c.195]


    Построение градуировочного графит. В мерные колбы вместимостью по 50 мл вводят от 5 до 30 мкг РЗЭ (с интервалом 5 мкг) или в виде раствора хлорида лантана для руд, содержащих минералы цериевой подгруппы, или в виде смеси растворов лантана и иттрия для руд, содержащих минералы цериевой и иттриевой подгрупп, или раствора суммы РЗЭ. В колбы добавляют по 25—30 мл 0,01 М раствора соляной кислоты, 5 мл буферного раствора, 2 мл арсеназо III. Объем растворов доводят до метки 0,01 М раствором соляной кислоты и тщательно перемешивают. Оптическую плотность растворов измеряют на фотоэлектроколориметре или спектрофотометре при Я = 650 нм в кюветах с / = 30 мм. В качестве раствора сравнения используют раствор контрольного опыта, содержащего все реактивы. По полученным данным строят график зависимости оптической плотности растворов от концентрации. [c.202]

    Сами металлы получаются путем электролиза расплавленных хлоридов или фторидов. Они белого или бледиожелтого цвета и весьма устойчивы иа воздухе. Плотность их колеблется в пределах 6,15 (лантан) и 7,7 (самарий) плотность церия 7,04. Они являются хорошими восстановителями и могут применяться вместо металлического магния. Иттрий ие был лолу-чен в совершенно чистом виде. В нечистом состоянии он представляет собой серый порошок. Ом имеет высокую точку плавления и сгорает в окись. Получают его путем электролиза расплавленного хлорида иттрия и иатрия или путем восстановления металлическим магнием. [c.606]

    Гадолиний и иттрий также не удается получить восстановлением хлоридов кальцием, так как при температуре, достаточной для расплавления получаемых металлов, хлорид кальция сильно вспенивается, что делает невозможным отделение металла от шлака. Проблема разрешается заменой хлоридов на фториды. Фториды менее гигроскопичны, а в результате восстановления образуется стабильный фторидный шлак, что обеспечивает полное разделение металла и шлака. Кроме того, применение танталовых тиглей сильно снизило загрязнение металла мате-риало тигля. Методом восстановления фторидов кальцием можно получить все редкоземельные металлы, кроме самария, европия и иттербия. [c.229]

    Сульфиды типа LnaSg. При получении полуторных сульфидов можно в качестве исходного вещества использовать окисел или безводный галогенид. Нагревание нормальных окислов в токе сероводорода при температурах от 800°С[931, 932, 16051 до 1300—1600°С [846, 9271 ведет к образованию сульфидов LnaSg. Если не предусмотрены специальные меры предосторожности от попадания кислорода в реакционный прибор, сульфид, как правило, бывает загрязнен оксисульфидом. В этон случае рентгенограммы представляют собой очень сложную картину, создающую опасность неправильной расшифровки. Плавление такого продукта с флюсом ионного характера, например LiF, приводит к э4х )ективной экстракции оксисуль-фидов [663]. Несколько удобнее получить сульфид иттрия нагреванием смеси окисла с сульфидом алюминия при 1460°Св токе сероводорода [930]. Еще более удобный путь, показанный на примере лантана, заключается в нагревании безводного хлорида в токе сероводорода при 800° С [190, 932]. [c.34]

    Робинзон [46] и Мэзон [48] произвели изоциестические измерения упругости пара растворов хлористого лантана при высоких концентрациях (0,05 — 2 М). Коэффициенты активности, полученные с помощью этих измерений, были приведены в соответствие с величинами, полученными для низких концентраций [47] они представлены в табл. 95. Мэзон использовал этот метод также для изучения концентрированных растворов хлоридов алюминия, скандия, иттрия, церия, празеодимия и неодимия. Полученные им данные приводятся в табл. 157. [c.403]


Смотреть страницы где упоминается термин Иттрий хлорид: [c.229]    [c.502]    [c.229]    [c.502]    [c.248]    [c.693]    [c.723]    [c.448]    [c.723]    [c.723]    [c.448]    [c.238]    [c.147]    [c.156]    [c.256]    [c.406]    [c.65]    [c.68]    [c.144]    [c.250]    [c.78]    [c.100]    [c.318]    [c.53]    [c.46]    [c.607]   
Химический энциклопедический словарь (1983) -- [ c.229 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.229 ]

Вредные химические вещества Неорганические соединения элементов 1-4 групп (1988) -- [ c.248 , c.256 , c.482 ]

Неорганическая химия (1974) -- [ c.344 ]

Неорганическая химия Издание 2 (1976) -- [ c.399 ]

Неорганическая химия Том 2 (1972) -- [ c.24 , c.39 , c.41 , c.42 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Иттрий

Иттрий электролизом хлорида



© 2025 chem21.info Реклама на сайте