Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичная структура белка

    Покажите на фрагменте полипептида возможность образования внутримолекулярных водородных связей при скручивании молекулы белка в спираль (вторичная структура белка). [c.38]

    Вторичная структура белков [c.344]

    ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Водородные связи играют основную роль в определении конформации полипептидной цепи. Спираль — наиболее высокоорганизованный тип конформации отдельной полипептидной цепи] ъ-аминокислот. Она определяется пространственным расположением следующих атомов а-аминокислот, составляющих цепь 1) атома углерода карбонильной группы, 2) а-углеродного атома и 3) атома азота а-аминогруппы. Наиболее устойчивой иа различных типов спирали является [c.408]


    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]

    Вторичная структура белка возникает за счет образования водородных связей между атомами водорода —КН-групп и кислородом —СО-групп (—N—С—) основной цепи. В результате этого образу- [c.425]

    Во-вторых, белковая цепь может по-разному располагаться в пространстве. Последовательность аминокислот в белке задает его форму, а форма определяет функции белка. Расположение аминокислот в пространстве, способ скручивания цепи — называется вторичной структурой белка. [c.452]

    Фиксация конформаций макромолекул (вторичной структуры) белка происходит в результате различных внутри- и межцепных взаимодействий. Ниже приведена схема внутри- и межцепных взаимодействий в макромолекуле белка [связи / - водородные и диполь-дипольные, 2 - гидрофобные , 3 - ковалентная дисульфидная, 4 - ковалентная сложноэфирная, 5 -ионная ( солевая )]  [c.346]

    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    При нагревании водородные связи разрываются — вторичная структура белка при 60—70° С разрушается, происходит его денатурация. Нуклеиновые кислоты выдерживают нагревание до 100° С и действие разбавленных щелочей и кислоты. Отсюда видно, что их строение более прочное, что характерно для структур, играющих роль матриц. [c.41]

    Типичными полярными и нейтральными боковыми радикалами обладают Ser, ys, Thr, Arg, Gin и Thr. Они способны образовывать внутри- и межцепные водородные связи. Эти звенья могут располагаться в макромолекуле белка как внутри, так и на поверхности глобулы. Звенья Asp и Glu, как правило, находятся также на поверхности частиц белков. Формирование вторичной структуры белка зависит как от особенностей первичной структуры, так и от внешних (влажность, pH, температура) условий. [c.342]


    Вторичная структура белка (разд. 25.2)-способ закручивания или распрямления цепи белковой молекулы. [c.465]

    Одна молекула белка содержит много водородных связей, которые являются одной из разновидностей внутримолекулярных сил притяжения, ориентирующих белковые цепи в трехмерном пространстве определенным образом, создавая вторичную структуру белка. На рис. 4.19 изображена а-спиральная структура, предложенная Полингом с сотрудниками на основе выполненного ими рентгеноструктурного исследования белков. а-Спираль — это спираль, которая, удаляясь от вас, закручивается по часовой стрелке. [c.100]

    Вторичная структура белка определяет спиралевидное закручивание белковой молекулы при помощи водородных связей между амидными группами (—СО...Н—Н—) поли-пептидной цепи. Энергия одиночной водородной связи невелика, однако таких связей в белковой молекуле может быть несколько десятков или сотен, так что общая энергия водородных связей достигает значительных размеров. [c.100]

    Вторая довольно редко встречающаяся конфигурация известна как р-структура. а- и р-конформации полипептидных цепей образуют вторичную структуру белка. Все аминокислоты, пептиды и протеины могут взаимодействовать с ионами металлов, образуя при этом координационные соединения. Некоторые протеины содержат в своем составе четыре прочно связанных пиррольных кольца. Эти ядра образуют скелет порфина. [c.565]

    Под вторичной структурой белка понимают форму полипептидной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипептидные цепи [c.420]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]

    По форме молекул белки делят на две большие группы — фибриллярные и глобулярные. Полипептидные цепи фибриллярных белков соединяются друг с другом посредством водородной связи, что приводит к образованию сложных спиралевидных структур, называемых вторичной структурой белка. [c.432]

    Еще несколько лет назад полагали, что а-спирали вторичных структур белка соединяются бок о бок , одна рядом [c.178]

    Водородная связь характерна для многих органических соединений (фенолов, альдегидов, карбоновых кислот и др.). За счет водородной связи образуется вторичная структура белков, двойная спираль ДНК. [c.75]

    Вторичная структура белка (для большинства белков) — это а-спираль, которая образуется в результате скручивания полипептидной цепи за счет водородных связей между группами -С- и -N- (рис. 21). [c.649]

    Все белки являются полипептидами, однако не каждый полипептид является белком. В настоящее время принято считать, что белками являются только такие полипептиды, для которых характерны определенная, свойственная данному белку последовательность чередования аминокислотных остатков (первичная структура белка) и специфическая пространственная конфигурация полипептидной цепочки (вторичная структура белка). Эти две важнейшие характеристики белковой молекулы обусловливают биологическую роль данного белка в живом организме. Считается, что в определенных условиях (pH среды, концентрация попов и т. д.) вторичная структура белка однозначно определяется его первичной структурой. [c.436]

Рис. 3. Блок-схема ал1оритма расчета вторичной структуры белков. Рис. 3. <a href="/info/50684">Блок-схема</a> ал1оритма <a href="/info/15003">расчета</a> <a href="/info/149924">вторичной структуры</a> белков.
    Пептидная цепь имеет определенную пространственную форму, которая составляет вторичную структуру белка. В природных белках пептидная цепь имеет форму спирали, обычно ее называют а-спиралью. Спиралевидная форма молекулы сохраняется за счет возникновения водородных связей между атомами водорода и кислорода в пептидной группе, которые располагаются между витками спирали (рис. 29.1). [c.448]

    В разд. 14.3 уже было отмечено, что причина, по которой все белки построены из ь-аминокислот, а не из смеси ь-и о-аминокислот, неизвестна. Тем не менее строение складчатого слоя и а-спирали, которые являются основными вторичными структурами белков, позволяет, по-видимому, понять это явление. Оба типа складчатого слоя имеют такую структуру, что одна из двух связей, соединяющих а-атом углерода с боковыми группами, направлена вовне почти под прямым углом к плоскости слоя и обеспечивает достаточное пространство для боковой цепи, между тем как другая связь лежит почти в плоскости слоя, где есть место лишь для атома водорода. В а-спирали, построенной целиком из ь - (или целиком из о -) аминокислотных остатков, боковые группы (при первых атомах углерода) расположены на расстоянии более 500 пм, тогда как в цепях, построенных из ь- и о-остатков, это расстояние составляет только 350 пм. Соответственно в первом случае структуры более устойчивы, так как для размещения больших боковых групп имеется больше места, чем в случае смешанных ь,о -цепей. Организмы, построенные исключительно из ь - (или о-) аминокислот (а также соответствующих углеводов и других веществ), к тому же несравненно проще, чем построенные на основе одновременно и ь- и в -форм. Дело в том, что ферменты, как правило, стереоспецифичны фермент, катализирующий реакцию с участием субстрата ь-ряда, не может катализировать ту же реакцию с участием субстрата о-ряда. Из этого следует, что существующим организмам достаточно только половины того числа ферментов, которое бы им потребовалось, если бы они были построены изь- и о-изомеров. Отбор же и-, а не в-аминокислот был, по-видимому, случайным. [c.435]


    ВТОРИЧНАЯ СТРУКТУРА белка, пространственное расположение атомов гл. цепи молекулы белка на ее отд. участках. Определяется последовательностью аминокислот (см. [c.109]

    Вторичная структура белков. Это первый этап пространственной организации полипептидных цепочек, контролируемый водородными связями пептидных групп, как внутримолекулярными, так и межмолекулярными. Основными видами вторичной структуры являются а-спираль, характерная как для всей молекулы белка (кератин волос, миозин и тропомиозин мышц), так и только для отдельных участков белкового полимера (инсулин). Она стабилизирована внутримолекулярными водородными связями >С=0- Н-Ы<. [c.97]

    Полипептидные цепи белков могут ориентироваться в пространстве самым различньш образом в виде колец, листов, клубков, сфероидов и Т.Д., создавая вторичную структуру белков, т.е. способы пространственной упаковки полипептидов. [c.271]

    В развитии структурных исследований белка большую роль сыграло изучение структуры аминокислот, пептидов и полипептидов, которое позволило установить основные стереохимические законы для остова полипептидной цепи. Мы рассмотрим вначале именно эти исследования, так как современные представления о вторичной структуре белка в большой мере опираются на их результаты. [c.536]

    Два таких основных типа конфигураций белковых структур от-крыли и обосновали в сороковых годах двадцатого столетия Ляйнус Полинг и Роберт Кори. При этом было установлено, что более высокоорганизованным типом конформаций полипептидных цепей является правовращающая а-спираль. Именно а-сшфаль - основной и пшроко-раслространенный тип вторичной структуры белков. Спираль может быть правой или левой, но более устойчивой является правая а-спи-раль. [c.272]

    Фибриллярные белки состоят из цепей полипептидов, соединенных между собой в основном вохюродной связью с образованием сложных спиралевидных структур, называемых вторичной структурой белка (рис. 39). [c.360]

    Порядок химической связи аминокислот друг с другом создает первичную структуру макромолекулы белка. Однако его свойства зависят также и от конформации полипептидной цепи (вторичной структур ы). Одной из моделей вторичной структуры белка является так называемая а-спираль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность 1илиндра. Устойчивость а-спирали обеспечивается водородными связями между группами NH и С=0 (рис. 11.1). [c.334]

    Еще несколько лет назад полагали, что а-спирали вторичных структур белка соединяются сбок о бок , одна рядом с другой — субъединица белка здесь представляет собой пласт полипептидных спиралей, а не кабель или пучок. Пласты наслаиваются один на другой, соединяясь в основном водородными связями, и образуют сферическую макроструктуру (ее часто называют глобулой или макроглобулой). Так, по Пальмеру, яичный альбумин состоит из четырех пластов субъедцгшп, в каждом из которых находится по 96 аминокислотных остатков, расположенных в восьми полипептидных цепочках по 12 аминокислот (рис. 85). Пласты обращены друг к другу своими гидрофобными либо гидрофильными частями. [c.202]

    К физическим факторам могут быть отнесены температурный—нагревание растворов выше 50—60° С многократное чередование замораживания и оттаивания денатурация под высоким давлением в 1000 кг/см и выше так, напрнмер, ферменты трипсин и химотрипсин при pH 5,0—5,2 под воздействием давления 7750 кг см через 5 мин инактивируются на 50% денатурация при воздействии ультразвуковых волн связана с разворачиванием молекул, а при более сильном воздействии ультразвука происходит даже paзpyшefIi e ковалентных связей при образовании мономолекулярных пленок на поверхности белковых растворов наблюдается так называемая поверхностная денатурация белка ультрафиолетовые лучи и ионизирующая радиация вызывают химические говреждеиия белковой молекулы, разрушая водородные связи, окисляя дисульфидные группировки, обусловливают исчезновение нативных третичных и вторичных структур белка. Интересными также являются наблюдения, указывающие на процессы денатурации, происходящие при старении белков. [c.209]

    ВЫЧИСЛЯЛОСЬ значение д, аналогичное описанному выше для отдельной аминокислотной позиции. Причем признаки и д вычислялись по краям участка, а Д(п- по центральной области. Если этот участок имел д < р (где Р -некоторый порог), то он искле-ча юя из расчета и рассматривался следупций фрагмент белка, смещенный вправо на одну позицию. При д > р участок расширялся в обе стороны за счет последовательного включения в него по одной позиции с одного из краев. На этих участках рассчитывались и фрагмент белка с максимальной д считался потенциальной о-спиральп. Дальнейиий поиск осуществлялся за с-концом этой спирали. Аналогичная процедура выполнялась и для Р-структур. Блок-схема алгоритма расчета вторичной структуры белков приведена на рис.З. [c.122]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    Хотя ни один из хиральных атомов не претерпел рацемизации , кривая дисперсип оптического вращения глобулярного белка в нативном состоянии будет отличаться от кривой дисперсии оптического вращения соответствующего денатурированного белка . Объясните это высказывание с точки зрения первичной и вторичной структуры белков. (Обратите внимание на то, что слово рацемизация приведено в кавычках. При изменении конфигурации хирального атома в молекуле, содержащей несколько хиральных атомов, образуется не энантиомер исходного продукта, а диастереомер.) [c.417]

    Всплывные масла 2/15 Вспышки температура 1/838, 830,831, 1175 2/102, 103, 304 3/1187 Встречная ди( узи9 3/256 Втор... 1/838 Вторичная структура белков 1/471, 473, 474 2/877 макромолекул 2/1263, 1266 нуклеиновых кислот 2/1323, 1324  [c.571]

    Для изучения вторичной и третичной структуры белка применяются самые разнообразные методы. Наиболее полные данные были получены при изучении дифракции рентгеновских лучей на различных белковых соединениях. Ряд данных, имеющих пр инципиальное значение для понимания вторичной структуры белка, был 1Получен при помощи таких методов, как инфракрасная спектроскопия и спектрополяриметрия. Пожалуй, следует отметить, что большинство из применяемых в этих исследованиях методов дают некоторую среднюю характеристику конфигурации полипептидных цепей и их упаковки в белке и оказываются нечувствительными к структуре отдельных небольших участков молекулы, если их конфигурация не соответствует конфигурации основной массы цепей. [c.536]

    Способ укладки пептидной цепи (образование спирали или -структуры) часто называют вторичной структурой белка. Дальнейшая укладка молекулы, основанная на бзаимодемствин групп, далеко отстоящих друг от друга вдоль цепи, приводит к формированию третичной структуры. Агрегация мономерных белковых субъединиц в оли-Ьомеры (гл. 4) определяет четвертичную структуру белка. [c.94]


Смотреть страницы где упоминается термин Вторичная структура белка: [c.482]    [c.171]    [c.111]    [c.273]   
Смотреть главы в:

Биологическая химия Изд.3 -> Вторичная структура белка


Химия (1978) -- [ c.428 ]

Биохимия Том 3 (1980) -- [ c.94 ]

Органическая химия (2001) -- [ c.508 ]

Молекулярная биология клетки Том5 (1987) -- [ c.139 , c.140 ]

Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.387 , c.388 ]

Органическая химия Издание 2 (1980) -- [ c.387 ]

Химия биологически активных природных соединений (1970) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Белки аномальные, деградация типы вторичной структуры

Белки вторичная и третичная структура

Белки вторичная, третичная четвертичная структуры

Белки связь первичной, вторичной и третичной структур

Белки типы вторичной структуры

Белок белки структура

Белок, структура первичная и вторичная

Вторичная и третичная структура белковой субъединицы

Вторичная структура белка предшественника рибосомной РНК

Моделирование свертывания белковой цепи на основе вторичных структур

Распространенность вторичных структур в белках

Структура белка



© 2025 chem21.info Реклама на сайте