Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теории скорости элементарных химических реакций

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Исходя из теории активных соударений и молекулярно-кинетических представлений, вычислим константу скорости элементарной бимолекулярной реакции (а) с участием молекул двух разных видов. Скорость рассматриваемой реакции согласно основному постулату химической кинетики выражается уравнением [c.337]

    Итак, сложный химический процесс, состоящий из ряда параллельных и последовательных простых реакций, можно описать системой дифференциальных уравнений, включающих скорости отдельных стадий. Решение системы дифференциальных уравнений — уже проблема математическая. Однако проинтегрирована ли система уравнений и получено ли окончательное решение в элементарных функциях, моделируется или рассчитывается процесс на ЭВМ, необходимо знать значения констант скоростей простых реакций. В формальной кинетике не раскрывается природа констант скоростей реакций. Константы входят как постоянные множители, значения которых определяются из опытных данных. Важнейшей задачей кинетики является раскрытие закономерностей, определяющих зависимость к от строения реагирующих молекул и условий опыта — температуры, среды, катализатора и других факторов. Задача эта решается двумя путями с одной стороны, идет накопление опытного материала о зависимости констант скоростей элементарных реакций к от различных факторов, с другой — делаются попытки создания теории элементарного химического акта и элементарных реакций, которая позволит предсказать значения к простых реакций в зависимости от строения реагирующих молекул и условий опыта. [c.556]

    Что такое первичный солевой эффект Самые общие представления о нем позволяют более глубоко понять сущность элементарных процессов химических реакций, протекающих в растворах. Рассмотрим один из аспектов Т гории сильных электролитов Дебая — Хюккеля (разд. 31.4), а именно зависимость коэффициента активности от ионной силы раствора. [Теория влияния нейтральных солей на скорость химических реакций в растворах была развита Бренстедом и Бьеррумом.] [c.184]

    Итак, мы ознакомились с основными положениями теории переходного состояния, с возможностями оценки на базе этой теории предэкспоненциального множителя в уравнении Аррениуса. Для вычисления энергии активации надо рассчитывать поверхность потенциальной энергии элементарного химического акта. Задача эта сложная и решается только для простейших реакций. Для отдельных типов реакций предложены приближенные методы расчета энергии активации. Широко применяются для оценки констант скоростей реакций корреляционные методы. [c.588]


    ТЕОРИИ СКОРОСТИ ЭЛЕМЕНТАРНЫХ ХИМИЧЕСКИХ РЕАКЦИИ [c.16]

    В общем случае, когда в активации молекул и обмене энергии.принимают участие также внутренние (колебательные и вращательные) степени свободы, проведение расчетов скорости реакции с учетом нарушений равновесного распределения представляет большие трудности. Современная теория скоростей элементарных химических реакций в условиях нарушенного равновесного распределения энергии кратко рассмотрена в 12. [c.150]

    Согласно теории переходного состояния (абсолютных скоростей реакций) выражение константы скорости элементарной химической реакции в реальной реакционной системе можно представить в следующем виде  [c.140]

    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]

    В теории абсолютных скоростей реакций используется упрощенная модель элементарной химической реакции. Предполагается, что реакция является адиабатической, не нарушает теплового равновесия в реагирующей зоне и протекает по схеме [c.20]

    Химическая термодинамика позволяет определить направление самопроизвольного химического процесса и то конечное состояние, в которое придет система в результате этого процесса — состояние химического равновесия. В то же время химическая термодинамика не дает ответа на вопрос, с какой скоростью будет проходить этот процесс. Скорость процесса определяется тем, по какому пути будет проходить этот процесс. Путь этот, как правило, является сложным и может, быть представлен в виде нескольких простых реакций. Отдельные простые реакции, из которых складывается сложный химический процесс, называют элементарными химическими реакциями. В этой главе будут рассматриваться элементарные химические реакции гомогенных химических процессов, т. е. процессов в газовой фазе и растворе, теория которых наиболее разработана. [c.265]

    На основе классического рассмотрения движения ядер разработано два статистических метода вычисления скорости элементарных химических процессов. Первый, основанный на применении газокинетической теории молекулярных столкновений, исходит из предположения, что молекулы представляют собой твердые шары. Второй, получивший название метода активированного комплекса или переходного состояния, принимает во внимание истинный характер зависимости потенциальной энергии системы от расположения атомов. Общей чертой обоих методов является предположение о том, что протекание реакции не нарушает существенно равновесного максвелл-больцмановского распределения в системе. [c.119]

    Для реакции между молекулами, состоящими из нескольких атомов, необходимо большое число координат для описания потенциальной энергии как функции положения различных атомов. Из-за сложности таких расчетов были рассчитаны поверхности потенциальной энергии только для нескольких относительно простых реакционных систем при этом были использованы различные приближенные методы. Однако много полезной информации можно получить из теории абсолютных скоростей реакций и без полного построения поверхности потенциальной энергии, описывающей реакцию. Полезно мысленно представлять реагенты переходящими постепенно в активированный комплекс, который затем диссоциирует на продукты, путем наблюдения за движением точки по поверхности потенциальной энергии это представление о сущности элементарной химической реакции должно быть сохранено, хотя для большинства систем количественное построение поверхностей потенциальной энергии в настоящее время не может быть выполнено. [c.494]

    Для изучения механизма химических реакций, в частности природы элементарного акта, значительный интерес представляет кинетический изотопный эффект, обусловленный влиянием изотопного состава реагирующей системы на скорость реакции. Мерой изотопного эффекта принято считать отношение констант скорости реакций молекул с разным изотопным составом-Теория этого эффекта рассмотрена в 198, 321 (см. также [72, 3321). [c.22]


    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]

    Конкретная модель, принятая в описанных расчетах, соответствует так называемой элементарной теории диссоциации. В рамках метода Монте-Карло можно без принципиальных затруднений рассмотреть более совершенные модели. В значительной степени этот прогресс сдерживается отсутствием данных по сечениям химических реакций. С другой стороны, основной целью проведенного исследования являлось установление главных закономерностей нарушения максвелловского распределения молекул при интенсивных реакциях, протекающих в системе, и обратного влияния такого нарушения на скорость этих реакций. Выводы, полученные в результате выполненных расчетов, не зависят, по-видимому, от конкретных видов молекулярных моделей [55]. [c.213]

    Но для понимания основных закономерностей осуществления химических реакций ключевым является именно изучение механизма. Ведь, с одной стороны, накопление информации о механизме отдельных химических реакций позволит проводить их классификацию и будет способствовать в дальнейшем созданию общей теории осуществления того или иного типа химических реакций (как это произошло, например, с цепными химическими реакциями, с, 104). С другой стороны, выявление механизма конкретной химической реакции позволяет решать важную практическую задачу — выделение наиболее медленной элементарной стадии, которую принято называть лимитирующей, т. е. определяющей скорость всего химического процесса в целом. Так, для реакции [c.52]

    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]

    Начало систематических исследований скорости химических превращений положено работами Н. А. Меншуткина в конце 70-х годов XIX в. Е 80-х годах Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие протеканием простых химических реакций, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х годах XX в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчета скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц. [c.3]

    Воспользуемся, далее, теорией активированного комплекса (стр. 240 и сл.). Согласно этой теории константа скорости элементарной химической реакции равна [уравнение (XVII. 28)] [c.294]

    Вывод основного уравнения. Статистический метод расчета скоростей элементарных химических реакций, известный под названием метода активированного комплекса или метода переходного состояния, исходит из трех основных предположений, на которых основана также и теория столкновений. Эти предположения уже обсуждались выше (см. 8 ). Первых два — это предположения о том, что движение ядер является адиабатическим и подчиняется законам классической механики Случаи, когда имеются неадиабатические переходы, заключающиеся в скачкообразном изменении нотенцнальной энергии атомов в процессе реакции, подлежат специ-а.тьному рассмотрению (см. 13). Отступления от классической механики обычно малы и требуют введения лишь небольших поправок (см. стр. 279 и след — и 290 и след). [c.156]

    Тепловые и диффузионные теории распространения пламени имеют ограниченную применимость, определяемую теми допущениями, которые положены в основу этих теорий. Надежные расчетные значения и могут быть получены только на основе детального механизма реакций горения, точных значений констант скорости этих химических реакций, точных значений коэффициентов диффузии и теплопроводности. Все эти требования на современном уровне знаний не могут быть удовлетворены. По этой причине в последние годы больщее внимание уделяется теоретическим расчетам, направленным не на вычисление и , а на выяснение отдельных особенностей механизма горения, на определение констант скорости отдельных элементарных реакций в процессе горения и т. д. [c.120]

    С общекинетической точки зрения большой интерес представляет исследование кинетического изотопного эффекта при высокотемпературном крекинге меченых этапов [1221 (С Нз — С Нз и С Нз — С Нз). Явление кинетическога изотопического эффекта состоит в изменении скорости превращения химических соединений вследствие изменения их изотопического состава. Изучение этого эффекта дает возможность сделать существенные выводы относцтельно закономерностей элементарных химических реакций и механизма суммарных реакций. Так, исследование кинетического изотопического эффекта при высокотемпературном крекинге меченых атомов в смеси с обычным этаном позволило по измерениям радиоактивности образующегося в процессе крекинга метана установить, что скорость разрыва связи С — С меньше таковой для связи С — С на 11 +2%, что значительно превышает величину 3 /о, находимую из формул для теории изотопического эффекта (121, 124]. Вероятность раз- [c.60]

    В третьем издании курса рассмотрены вопросы, которые приобрели фундаментальное значение, но не затрагивались в прежних изданиях. В гл. III ( Элементарные химические реакции ) введен параграф, посвященный вычислению констант скоростей с помощью корреляционных соотношений, рассматриваемые типы элементарных реакций дополнены реакциями переноса электронов, лежащими в основе большого числа окислительно-восстановительных процессов. В параграфе, посвященном методу квазисгяционарных концентраций, подробно рассмотрена общая теория стационарных реакций, введено понятие маршрута и с этих позиций рассмотрены кинетические схемы основных типов сложных реакций — сопрялжнных, каталитических и цепных. [c.6]

    Исходя из теории активированного комплекса можно найти более детальное иыражение для параметра е . Действительно, для скорости протекания элементарной химической реакции / ] теория активированного комплекса предсказывает следующую зависимость  [c.311]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]

    Кинетический эксперимент был бы неполным, если бы исследователь ограничился только определением константы скорости. Цифровая оценка скорости течения химической реакции, сколько бы точна она ни была, сама по себе не дает никаких сведений об интимных химических актах, совершаюш,ихся в системе. Изучать последние было бы просто, если бы мы располагали мош,ным оптическим инструментом для непосредственного наблюдения за перемещением атомов и преобразованием электронной структуры взаимодействующих молекул. Но такого инструмента нет, и остается один путь — разработка теории элементарных химических актов.- Мы должны придумать некоторую атомную модель и постараться вывести уравнение динамики изменения молекул в ходе хииической реакции. Такая теория существует это тео- [c.27]

    Область каталитических химических реакций исключительно сложна. Рассмотрение теории каталитических превращений даже в самой элементарной и простой форме выходит из рамок данной монографии. Этому вопросу посвящены превосходные руководства, ознакомление с которыми даст читателям достаточно полное представление о современном состоянии науки о катализе [1—3]. Как хорошо известно, катализ основывается на том, что скорость некоторых химических реакций в сильной степепи зависит от присутствия некоторых веществ (называемых катализаторами) не претерпевающих превращения в ходе реакции. Катализаторы могут увеличивать (положительный катализ) или уменьшать (отрицательный катализ) скорость реакции или направлять реакцию в определенном заданном направлении. В зависимости от фазовых соотношений между катализатором и реагирующими веществами различают гомогенные и гетерогенные каталитические реакции. Гомогенные каталитические реакции характеризуются тем, что катализатор и исходные вещества находятся в одной и Т011 же фазе, в то время как при гетерогенном катализе катализатор и исходные вещества находятся в различных фазах или агрегатных состояниях. Каталитические процессы очистки газа основываются на явлениях положительного катализа. Поскольку обычно применяются твердые катализаторы, в данном случае речь идет о гетерогенных каталитических превращениях. [c.322]

    Примеиепие молекулярно-кинетической теории к расчету скоростей химических реакций основано на предположении, что каждое столкновение приводит к осуществлению элементарного акта. Если это предположение правильно, то скорость химической реакции можио подсчитать по формулам для числа столкновении между молекулами. Проверим это предположение на конкретном примере экспериментально изученной реакции  [c.124]

    Скорость элементарной реакции равна произведению концентраций реагентов, участвующих в химическом акп1е, возведенных в степени, равные стехиометрическим коэффициентам реакции. Уравнение (195.1) является основным законом кинетики. Коэффициенты v могут принимать только целые положительные значения, равные 1, 2, 3. Закон действующих масс был впервые сформулирован Гульдбергом и Вааге (1867). Пфаундлер уравнение (195.1) теоретически вывел на базе молекулярно-кинетической теории (1867). Часто односторонние реакции могут протекать через стадии образования промежуточных соединений реагирующих молекул с молекулами растворителя или катализатора, с последующим превращением в продукты реакции. Тогда уравнение скорости химической реакции записывают в форме [c.533]

    В большинстве теорий скорости реакций используется так называемое адиабатическое приближение, т. е. предполагается, что изменение положения ядер реагентов в ходе химической реакции происходит на заданном электронном терме (при фиксированной электронной энергии Это означает, что если электроны исходных частиц, входящих в реакцию (1.1), находились в основном состоянии, то электроны продуктов реакции, а также электроны всех промежуточных частиц, образующихся в ходе элементарного акта и соответствующих определенным расстояниям между ядрами, будут находиться в основном состоянии. [c.17]


Смотреть страницы где упоминается термин Теории скорости элементарных химических реакций: [c.198]    [c.6]    [c.149]    [c.159]    [c.7]    [c.568]    [c.593]    [c.274]    [c.568]   
Смотреть главы в:

Кинетика и термодинамика радикальных реакций крекинга -> Теории скорости элементарных химических реакций




ПОИСК





Смотрите так же термины и статьи:

Реакции элементарные

Скорость реакции элементарная реакция

Теория реакций

Теория элементарных реакций

Химическая теория

Химические реакции скорость

Химические скорость

Химические элементарные

теории химических реакций



© 2025 chem21.info Реклама на сайте