Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород молекулы, образование связей

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]


    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Термическая устойчивость простейших газообразных парафиновых углеводородов очень велика. Так, метан при температуре ниже 700—800° С практически не разлагается. При умеренной глубине разложения основными продуктами крекинга являются этан и водород. Этан и пропан склонны к реакциям дегидрогенизации с образованием соответствующих олефинов. По мере увеличения молекулярного веса исходного углеводорода термическая устойчивость его падает и преобладающими становятся реакции расщепления молекул по связи С—С (менее прочной, чем связь С — Н). Так, н-бутан [c.23]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]


    На примере Н2 и р2 можно понять, что происходит во многих молекулах, где электронные пары образуют связи, в результате чего каждый атом, приобретает замкнутую электронную оболочку. Для построения замкнутой электронной оболочки атому водорода требуются два электрона, которые заполнят его валентную Ь-орбиталь. Каждому атому элемента второго периода требуется для создания замкнутой электронной оболочки восемь- электронов (восьмерка октет), потому что на 2х- и 2р-орбиталях размещается до восьми электронов (2 "2р ). Это требование получило название правила октета. В примере с молекулой 2 каждый атом Р после образования связи оказывается окруженным восемью электронами. [c.467]

    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию ls-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла перекрывания или ортогональности Если значение велико, то и перекрывание орбиталей и велико. Особую важность имеет перекрывание в направлении связи, но следует сказать, что перекрывание вообще принадлежит к тем факторам, которые необходимо учитывать при выборе атомных орбиталей, участвующих в построении молекулярной орбитали. Необходимо учитывать и симметрию комбинируемых орбиталей. Известно, что р-орбиталь имеет положительную и отрицательную [c.153]

    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]

    Гидрогенизация (гидрирование) твердого топлива. Гидрогенизация— это способ получения искусственного жидкого топлива — заменителя нефти и нефтепродуктов из бурых и каменных углей, сланцев и других видов низкосортного топлива. Метод основан на гидрировании топлива при высокой температуре, высоком давлении водорода в присутствии катализаторов. В этих условиях происходит разрушение непрочных межмолекулярных и внутримолекулярных связей в органической массе топлива с присоединением водорода и образованием низкомолекулярных углеводородов из высокомолекулярных соединений. Высокие температура и давление способствуют образованию жидкой фазы, которая вновь подвергается каталитическому гидрированию с расщеплением крупных молекул и присоединением водорода. Гидрированию подвергаются также соединения, содержашие серу, кислород и азот. Продуктом гидрогенизации служит жидкая смесь легких углеводородов (моторное топливо) с минимальным содержанием примесей серы, кислорода и азота, удаляемых в газовую фазу в виде НгЗ, Н2О и ЫНз. [c.54]

    Огромную роль в межмолекулярных взаимодействиях играет водородная связь, поскольку ею в значительной мере определяется возможность образования комплексов, мицелл и ассоциаций молекул в объеме масла и на поверхности металлов. Межмолекулярная водородная связь зависит от электростатических и донорно-акцепторных взаимодействий между молекулами—донором (АН) и акцептором (В) водорода. Энергия водородной связи по величине (8—60 кДж/моль) уступает энергии химических связей, но именно она в межмолекулярных связях во многом определяет ассоциацию молекул воды, спир- [c.203]


    В органической химии реакции окисления чаще всего идут как присоединение к реагирующей частице кислорода, отрыв от нее водорода или образование связей углерода с более электроотрицательными атомами, чем в исходной молекуле, при этом уменьшается электронная плотность на атоме углерода, являющемся реакционным центром. В качестве примеров окисления в таком его понимании можно привести некоторые из уже рассмотренных реакций  [c.60]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Можно думать, что на поверхности катализатора, относительно обедненной водородом, основная масса молекул н-гептана адсорбирована всеми семью атомами углерода. При этом геометрия конформаций А и Б такова, что их адсорбция сопровождается блокированием отмеченных междоузлий алкильными группами группами С-1 и С-7 в конформации А и С-6 в конформации Б. В последнем случае второе междоузлие в определенный момент может оказаться занятым свободным водородом, что по указанным ниже причинам создает относительно более благоприятную возможность для образования переходного состояния. Это обусловлено тем, что на поверхности металла продолжительность жизни адсорбированного углеводорода значительно больше, чем у адсорбированного водорода [102], в связи с чем междоузлия, занятые алкильными остатками, освобождаются значительно реже, чем места, занятые водородом. Поэтому в условиях недостатка водорода вероятность создания благоприятных условий для занятия обоих междоузлий атомами водорода из молекулы н-гептана, а следовательно, и для образования переходного состояния ниже для конформации А. [c.216]

    Электронное строение многоатомных молекул может быть объяснено образованием локализованных молекулярных орбиталей между каждой парой соседних атомов в молекуле. Для объяснения связи между центральным атомом молекулы (например, углерод в СН4) и присоединёнными к нему периферийными атомами (четыре атома водорода в СН4) часто используют гибридные орбитали, из которых затем строят локализованные орбитали. Если к центральному атому присоединены четыре периферийных атома, для образования локализованных связывающих орбиталей используются четыре эквивалентных sp -гибрида (тетраэдрические гибридные орбитали) при наличии трех периферийных атомов центральный атом использует для образования связей с ними три своих эквивалентных sp -гибрида (плоские тригональные гибридные орбитали) при двух периферийных атомах центральный атом использует два эквивалентных sp-ги-брида (линейные гибридные орбитали). Например, каждую связь С—Н в молекуле СН4 можно представить как электронную пару на локализованной связывающей молекулярной орбитали, образованной sp -гибрида-ми атома углерода и ls-орбиталями атомов водорода [схема связи (sp -I-+ Is)]. [c.595]

    Направленность химических связей и распределение электронных плотностей в молекуле воды можно объяснить электростатическим взаимодействием между атомами водорода при образовании связей О—Н и гибридизацией 5- и р-электронных орбиталей атома кислорода. В невозбужденном атоме кислорода электронная структура 2-го слоя 28 2рг 2ру 2ру ) описывается следующим образом 252-электроны образуют сферическое облако над электронным облаком 1-го слоя (15 ), а плотность заряда электронов р-подуровня симметрично распределена в форме гантелей вдоль осей х, у, г, расположенных под углом 90° относительно друг друга. Молекула [c.7]

    Торпе и Юнг [531 первыми предложили теорию прямой молекулярной перегруппировки, т. е. первичного разрыва углеводородной цепи, сопровождающегося одновременным смещением атомов водорода с образованием олефииа и предельного углеводорода с меньшим числом атомов углерода или молекулы водорода. Согласно представлениям Габера [15] этот первичный разрыв должен происходить по месту крайней связи С—С с обязательным образованием метана. Одиако последующие работы показали, что разрыв углеводородной цени может произойти в любом положении и что общая реакция представляет собой сумму таких различных расщеплений. [c.7]

    Это определяет образование четырех связей С—Н и расположение атомов водорода молекулы метана СН4 в вершинах тетраэдра (рис. 50). [c.72]

    Нет необходимости предполагать, что каждый углеводород способен окисляться только одним определенным путем. Как наблюдалось, в продуктах окисления одного олефина могут быть обнаружены несколько-типов перекиси. Больше того, при окислении поЛиолефиновых угле водородов возможно образование продукта, содержащего оба типа перекисных связей в одной молекуле примером такого соединения является диперекись сквалена. Разнообразие продуктов окисления обусловливается не только образованием перекисей различных типов, но также продуктами их разложения. [c.287]

    В ходе этого проиесса разрываются связи Н-О (с поглощением энергии) и образуются связи Н-Н и 0-0 (с выделением энергии). Для разрыва молекул воды нужно больше энергии, чем освобождается при образовании связей в молекулах водорода и кислорода. Таким образом, в целом для разложения воды требуется дополнительная энергия. Эндотермические процессы могут происходить только при постоянном подводе энергии извне. [c.199]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительнс мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Две вышеизложенные модели электронного строения КНз предсказывают различные величины валентного угла Н—N—Н, но одинаковую форму молекулы. (Под формой молекулы мы понимаем положения атомов, которые могут быть установлены экспериментально, но не положение неопределенной пары электронов, о котором можно только строить предположения.) Обе модели связи в КНз позволяют утверждать, что эта молекула имеет тригонально-пирамидальную форму. Однако модель образования связей из 2р-орбиталей азота и 15-орбиталей водорода предсказывает, что валентный угол Н—N—Н имеет величину 90° (угол между р-орбиталями), тогда как, согласно модели образования связей из гибридных хр -ор-биталей азота и Ь-орбиталей водорода, валентный угол Н—N—Н имеет тетраэдрическое значение 109,5° (угол между гибридными 5р -орбиталя-ми). [c.561]

    Промотированном различными металлами в присутствии гомогенной добавки Ва(0Н)2 (0,1 моль на 1 моль глюкозы). Эксперименты проводились в автоклаве с интенсивным перемешиванием (2800 об/мин). Было установлено, что в интервале 40—120 С (при давлении водорода 12 МПа) протекает преимущественно гидрогенизация глюкозы с образованием сорбита. Выход глицерина и гликолей не превышает 10%. В интервале температур от 160 до 220°С начинает интенсивно идти гидрогенолиз связей С—С глюкозы с образованием все большего количества глицерина и гликолей. С ростом температуры происходит не только повышение энергии молекул реагирующих веществ, но и изменение их соотношения на поверхности катализатора, о чем свидетельствует величина смещения потенциала катализатора. При небольших смещениях потенциала (Дф 50—60 мВ) и, следовательно, при достаточно большом заполнении поверхности катализатора водородом идет в основном гидрирование глюкозы. Не исключено, что при большом заполнении поверхности катализатора водородом молекулы глюкозы имеют возможность контактировать с поверхностью только одним концом, вероятно карбонильной группой. С увеличением температуры поверхность катализатора все больше освобождается от водорода и при больших значениях Дф (200—250 мВ) наряду с указанной реакцией протекает гидрогенолиз связей С—С глюкозы, т. е. при меньших заполнениях поверхности катализатора водородом молекула глюкозы (имеющая по предварительным расчетам длину в 1 нм) может расположиться вдоль поверхности катализатора. Это способствует протеканию реакции гидрогеиолиза глюкозы. При больших смешениях потенциала (Дф>250 мВ) происходит дега- [c.83]

    Кроме сил Ван-дер-Ваальса в образовании растворов (углеводородов) большую роль играют водородные связи, которые образуются при взаимодействии электроотрицательного атома кислорода, фтора, азота и в слабой степени атома хлора с атомом водорода. Наличие водородной связи приводит к ассоциации молекул раст ворителя и уменьшению его растворяющей способности. Водородные связи образуются в большей степени при понижении температуры. При образовании водородных связей взаимодействие диполей в ряде случаев имеет второстепенное значение. [c.70]

    Для рекомбинации атомов водорода образование молекулы возможно лишь в том случае, когда часть выделяющейся при образовании связи энергии отводится третьей частицей, т. е. рекомбинация может произойти только при тройном соударении двух атомов водорода с какой-либо молекулой. Удельная частота тройных соударений составляет - 10 см -молекула-2 с  [c.45]

    При отнесении обсуждавшихся выше частот Штраусс и Саймонс [386,387] использовали спектральные данные для метанольных растворов с небольшими добавками воды. Было обнаружено, что даже при концентрации воды 0,1 М полоса ОН-колебания, приписанная концевой молекуле метанола в цепи, исчезает. Из этого можно сделать вывод, что каждая молекула воды является мостиком между двумя цепями, причем атомы водорода молекул воды связаны с атомами кислорода концевых молекул метанола, имеющими свободные электронные пары. Однако полоса I, приписанная сильнейшей водородной связи, также исчезает, тогда как II становится сильнее. Это может указывать на вхождение молекулы воды в координационную сферу, хотя данное объяснение противоречит тому факту, что в метанольном растворе способность молекул воды к образованию водородных связей меньше, чем у метанола. Вероятнее всего, имеет место образование циклического сольвата  [c.118]

    В этом комплексе частицы Н и Н+, располагаясь симметрично относительно оси связи между молекуло воды и металлом (Н2О—М), образуют молекулярный ион Н2+, связанный одновременно с поверхностью металла и с молекулой воды. Связь с металлом обеспечивается за счет валентного электрона, связь с молекулой воды — за счет результативного положительного заряда иона. Переходный комплекс может появиться и без предварительного акта разряда и образования адсорбированного атома водорода. Для этого необходимо, чтобы один из двух ближайших адсорбированных понов водорода приобрел электрон. Электрохимическая десорбция, по Гориучи, таким образом, не обязательно должна проходить через разряд гидроксониевого иона на поверхности металла, уже частично покрытой атомами водорода. [c.407]

    Лыоисовы кислоты (ВРз, А1С1.з), ион водорода — все это инициаторы гетеролитическоя, а именно катионной полимеризации. Эти инициаторы вытягивают пару электронов я-связи для заполнения электронной лакуны (водород для образования связи может принять пару электронов, а ион его пе имеет ни одного у элементов третьей группы имеется тенденция дополнить секстет электронов до октета). Молекула олефина приобретает при этом положительный заряд на втором олефиновом углероде (карбкатион), который, вытягивая пару электронов следующей молекулы олефина, продолжает цепь полимеризации  [c.275]

    Число электронов, которые атом данного элемента может дять для образования связей с другими атомами, а следовятельио, и валентность элемента определяются тем, что наружная электронная оболочка является наиболее устойчивой, когда обладает структурой из восьми электронов (электронный октет), кроме первой оболочки (у водорода), для которой устойчивой является структура из двух электронов. Прн этом электронные, пары, связывающие данные два атома, следует считать принадлежащими обоим (как одному, так и другому) атомам, что схематически показано для молекулы фтора  [c.63]

    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию 1 s-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла не-рекрывания или ортогональности 8аь = Если значение [c.153]

    В настоящее время трудно исчерпывающе объяснить механизм трансаннулярных переходов, исходя только из концепции ионных перегруппировок с 1,2-смещением. Особенности перегруппировок углеводородов ряда бицикло(3,3,1)нонана предопределены главным образом стереохимическими факторами. Сближенность аксиальных водородов нри С-З и С-7 ведет к деформации циклогексановых звеньев в молекуле [13] и к значительному напряжению в системе, которое легко устраняется путем образования новых связей в циклооктановом кольце с одновременным разрывом одной из мостиковых связей. Можно допустить, что гетеролитический разрыв мостиковой связи несколько опережает трансаннулярное замыкание. В результате также образуется короткоживущее неустойчивое промежуточное соединение А, в котором замыкание новой связи происходит по всем различным направлениям и обусловлено лишь возможностью перемещения заряда но кольцу. Замыкание новых связей облегчено возникновением ионов карбония, появляющихся при разрыве мостиковых связей 1—9 или 5—9. Конечно, более естественным представляется перегруппировка, осуществляемая путем образования связи 3—7 (ввиду близ- [c.220]

    Физические причины образования связи между атомами удалось установить только после того, как стали известны законы движения микрочастиц — была создана квантовая механика. В 1927 г. (через год после опубликования уравнения Шредингера) появилась работа Гейтлера и Лопдона (Германия), посвященная квантовомеханическому расчету молекулы водорода. Эта работа поло->кила начало применению квантовой механики для решения химических проблем. Так получила развитие новая область науки — квантовая химия, решающая химические проблемы с помощью квантовой механики. Кратко рассмотрим принципы кваи-товохимнческих расчетов.  [c.74]

    Характерной особенностью процесса каталитического крекинга является перераспределение (диспропорционирование) водорода. Это явление связано с тем, что в системе протекают одновременно как реакции дегидрирования с образованием алкенов, полимеризующихся на поверхности катализатора до кокса, так и реакции гидрирования и образования насыщенных соединений. Таким образом, в процессе крекинга одни молекулы обедняются водородом, а другие им насыщаются  [c.136]

    Инертность парафинов к реакциям присоединения объясняется тем, что все свободные связи углеродных атомов насыщены в них до предела водородом, т. е. вся свободная энергия связи в молекуле использована на образование связей С—Н. Химическая пассивность парафинов объясняется также и тем, что все связи в их молекулах являются гомеополярными. Парафины разветвленного строения, имеющие в молекуле один или несколько третичных атомов углерода, более реакциопноспособны, чем нормальные парафины, они пегко вступают в реакции замещения с азотной и серной кислотами л другими реагентами. [c.54]


Смотреть страницы где упоминается термин Водород молекулы, образование связей: [c.183]    [c.37]    [c.148]    [c.66]    [c.148]    [c.301]    [c.319]    [c.565]    [c.567]    [c.48]    [c.60]    [c.66]    [c.67]    [c.149]   
Справочник Химия изд.2 (2000) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Водород связь в молекуле

Молекула образования

Молекулы водорода

Молекулы связь

Образование связи в молекулах



© 2025 chem21.info Реклама на сайте