Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы структурообразование

    Известно, что пространственная структура, ответственная за проявление аномалий вязкости, в нефтях может быть образована парафиновыми углеводородами и асфальтенами [1, 2]. Изменить процессы структурообразования в дисперсных системах удается путем ввода в эти системы специальных поверхностно-активных веществ [ 13]. Молекулы ПАВ в силу своей дифильности способны адсорбироваться на границах раздела фаз, т.е. на поверхности частиц дисперсной фазы, и менять прочность образуемой ими структуры. [c.16]


    СТРУКТУРООБРАЗОВАНИЕ В ДИСПЕРСНЫХ СИСТЕМАХ [c.251]

    Ребиндер П. А. О природе пластичности и структурообразования в дисперсных системах. Сб., посвященный памяти академика П. П- Лазарева. АН СССР, 1956. [c.11]

    Учение о коллоидах было выделено как самостоятельное направление научных исследований немногим более ста лет назад и развивалось на стыке физики и химии. По сути, предметом рассмотрения были дисперсные системы с определенными пределами размеров дисперсной фазы. Направлениями исследований коллоидных систем явились диффузия, сорбция, вязкость, электропроводность, оптические и поверхностные свойства, устойчивость против расслоения и многие другие. Важным разделом коллоидной химии считается коллоидная механика, преобразованная в физико-химическую механику дисперсных систем, изучающая структурообразование в дисперсных системах и их структурно-механические свойства. [c.13]

    ВИСКОЗИМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ОСОБЕННОСТЕЙ СТРУКТУРООБРАЗОВАНИЯ В НЕФТЯНЫХ ДИСПЕРСНЫХ СИСТЕМАХ [c.85]

    Полученные результаты характеризуют растворы ВМС нефти в масле МП-1 как сильно структурированные дисперсные системы. Они обладают четко выраженной аномалией вязкости и низкой прочностью структур. Введение в них сажи приводит к повышению структурообразования. При этом прочность структур в целом повышается. [c.262]

    Образование твердых тел с характерными для них механическими свойствами также теснейшим образом связано с процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений, представляющих собой, соответственно, коагуляционные и конденсационные структуры. [c.14]

    Структурообразование в дисперсных системах [c.302]

    Структурообразованием называется фиксация пространственного положения частиц дисперсной системы. [c.157]

    В разбавленных агрегативно устойчивых дисперсных системах, т. е. когда потенциальная кривая парного взаимодействия частиц имеет вид, показанный на рис. VI.2,а, взаимная фиксация частиц отсутствует. Говорят, что в этом случае структурообразование отсутствует. [c.192]

    Рассмотренные в предыдущих двух главах процессы нарушения агрегативной устойчивости дисперсных систем приводят в одних случаях к их разделению на макрофазы, в других — к развитию в объеме системы пространственной сетки-структуры, т. е. к переходу свободнодисперсной системы в связнодисперсную, в которой силы сцепления в контактах между частицами достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. При этом наблюдается радикальное изменение свойств дисперсной системы она приобретает комплекс новых — структурно-механических (реологических) свойств, характеризующих сопротивление деформации и разделению на части, т. е. отвечающих ее способности служить материалом. Система приобретает механическую прочность — главное свойство всех твердых тел и материалов, определяющее их роль в природе и в технике. Закономерности структурообразования в дисперсных системах, механические свойства структурированных систем и получаемых на их основе разнообразных материалов, с особым вниманием к роли физико-химических явлений на границе раздела фаз, изучает обширный самостоятельный раздел коллоидной химии, названный физико-химической механикой. [c.306]


    VI1.18.10. Вычислить критическую концентрацию структурообразования дисперсной системы. [c.252]

    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному п вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсациоиио-кри-сталлизацпонное структурообразование, отвечающее коагуляции в первичной потенциальной яме, происходит путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры. Если частицы аморфные, то структуры, образующиеся в дисперсных системах, принято называть конденсационными, если часпщы кристаллические, то структуры являются кристаллизационными. При непосредственном срастании частиц механические свойства структур соответствуют свойствам самих частиц. Конденсационно-кристаллизаци-онные структуры типичны для связнодисперсных систем, т. е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. [c.365]

    Структурообразование а дисперсных системах 315 [c.315]

    В первой части учебного пособия даются основные представления о дисперсных системах и поверхностных явлениях в них, о поверхностно-активных веществах и устойчивости. Рассматривается современная теория лиофильности, вопросы реологии и модельного анализа в дисперсных системах. Приводятся основные положения теории структурообразования н механических свойств кристаллов, а также принципы регулирования процессами формирования дисперсных структур различного состава. [c.2]

    В развитии указанных основных проблем современной науки и техники фундаментальное значение приобретают коллоидная химия и реология в тех основных формах, которые сложились под влиянием физико-химической механики и соответствующих областей практики. Большое значение коллоидной химии, т. е. учения о дисперсных системах и поверхностных явлениях, и реологии в развитии физикохимической механики связано с тем, что реальные твердые тела и отдельные кристаллы обладают своеобразной коллоидной структурой кроме того, образование твердых тел с характерными для них механическими свойствами зависит от процессов, изучаемых современной коллоидной химией и реологией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений. Поэтому прежде чем рассматривать основные принципы и содержание физико-химической механики, необходимо вначале изложить те разделы коллоидной химии и реологии, с которыми непосредственно связана эта наука. [c.4]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    В классической физике механические свойства тел изучались без учета физико-химических факторов, особенностей состава и строения (структуры самого тела) и окружающей среды. Обычно проводилось резкое различие между твердыми телами и жидкостями. Дальнейшее развитие молекулярной физики и в особенности коллоидной химии с учением о структурообразовании в дисперсных системах показало, что, с одной стороны, различие между жидкостями и твердыми телами носит кинетический (релаксационный) характер, а с другой, — что между предельными состояниями — идеально упругими твердыми телами и вязкими жидкостями осуществляется непрерывный ряд переходов, образующих огромное многообразие реальных тел промежуточного характера. Следовательно, учение о механических свойствах должно стать крупной самостоятельной главой современной физикохимической науки. [c.172]

    Такими основными разделами автор считает поверхностные явления и адсорбцию, в частности, электроповерхностные явления, устойчивость и структурообразование в дисперсных системах и учение о поверхностно-активных веществах. [c.6]


    Все эти особенности — неполная воспроизводимость, структурообразование и лабильность — имеют огромное значение в процессе эволюции материи к наиболее высокоорганизованной ее форме — жизни. Потенциальные возможности жизненных процессов уже заключены, как в зародыше, в дисперсных системах, из которых построено живое вещество. Коллоидный уровень материи, надмолекулярный или высокомолекулярный, соответствующий молекулярному уровню в биологии, является необходимым и неизбежным звеном в процессе эволюции. [c.11]

    Образование систем с твердым каркасом часто является результатом нарушения агрегативной устойчивости суспензий и золей и протекания вследствие этого процессов развития в системе пространствен ных структур — превращения дисперсной системы в материал с ценными механическими свойствами (см. 2 гл. XI). В некоторых случаях эти процессы структурообразования происходят одновременно с выделением новых высокодисперсных фаз, как при твердении металлов и сплавов. Системы с твердой дисперсионной средой образуются и при отвердевании среды в пенах, эмульсиях, суспензиях и золях. [c.305]

    Структурообразование в дисперсных системах является результатом самопроизвольно протекающих (термодинамически выгодных) процессов сцепления частиц, приводящих к уменьшению свободной энергии системы, например процессов коагуляции дисперсной фазы или конденсации вещества в местах контакта частиц. Развитие пространственны сеток (дисперсных структур) различных типов лежит в основе способности дисперсной системы становиться материалом с определенными механическими свойствами, т. е. выступать в новом по сравнению с исходным (несвязным) состоянием качестве [c.375]

    Впервые в курс коллоидной химии включены разделы, посвяч щенные пористым телам или дисперсным системам с твердой дисперсионной средой. К этим системам относятся, например, адсор бенты и катализаторы, широко используемые в промышленности. Значительное внимание обращено на структурообразование в твердых телах, обусловливающее мехапическпе и другие свойства различных материалов. [c.7]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    На базе проведенных исследований разработаны модельные представления, качественно и в некоторой степени количественно объясняющие процессы структурообразования в нефтяных дисперсных системах и механизм действия модификаторов их структуры, представляющие основу пригщипов подбора ингибиторов парафиноотложения и депрессорных присадок для высокозастывающих нефтей и газовых конденсатов. [c.247]

    Структурообразование в дисперсных системах в присутствии полиэлектролитов. (Сборник). Под ред. К. С. Ахмедова. Ташкент, Изд-во ФАН Узбе1 ской ССР, 1970.174 с. [c.493]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]

    IV. Основы физико-химической механики. Здесь приведены способы реологического описания механического поведения различных конденсированных систем, изложение основных закономерностей и механизма взаимодействия частиц дисперсных фаз и процессов структурообразования в различных типах пространственных структур, возникающих в дисперсных системах, и, далее, анализ закономерностей диспергирования и разрушения реальных твердых тел и влияния поверхностно-активной среды на эти процессы (эффект Ребин-дера). [c.13]

    Структурообразование в дисперсных системах является результатом самопроизвольно протекающих (термодинамически выгодных) процессов сцепления частиц, приводящих к уменьшению свободной энергии системы, например процессов коагуляции дисперсной фазы или конденсации вещества в местах контакта частиц. Развитие пространственных сеток (дисперсных структур) лежит в основе спог [c.314]


Смотреть страницы где упоминается термин Дисперсные системы структурообразование: [c.337]    [c.9]    [c.9]    [c.9]    [c.365]    [c.416]   
Общая химия Издание 18 (1976) -- [ c.333 ]

Общая химия Издание 22 (1982) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Структурообразование



© 2025 chem21.info Реклама на сайте