Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Главнейшие свойства атомного ядра

    В отличие от атомных масс такие характеристики химических элементов, как радиусы их атомов г, ионизационные потенциалы I, сродство к электрону (СЭ) и электроотрицательность (ЭО) являются периодической функцией заряда ядра. Для элементов главных подгрупп эти параметры изменяются по периоду слева направо в направлении уменьшения радиуса атома и увеличения ионизационного потенциала, сродства к электрону и электроотрицательности, т. е. уменьшения для элементов металлических и усиления неметаллических признаков. Соответственно свойства простых вещеста изменяются от типичного металла — щелочного до типичного неметалла — галогена, после чего период завершается благородным газом. В пределах каждой подгруппы сверху вниз радиусы атомов увеличиваются и соответственно уменьшаются ионизационный потенциал, сродство к электрону и электроотрицательность, т. е. усиливаются металлические свойства простых веществ. Эта общая закономерность нарушается при переходе в III группе от р-элемента 3-го периода (А1) к /7-элементу 4-го периода (Ga). Причиной является уменьшение радиуса атомов в ряду появившихся в 4-м периоде -элементов, которое называют -сжатием . Оно сказывается прежде всего на размере атома первого /7-элемента того же периода Ga. В результате радиус его атома оказывается не больше, а на [c.95]


    Симметрия. Важнейшей характеристикой МО является ее симметрия. В конечном счете связывающие свойства также определяются симметрией молекулярной орбитали. В то время как атомная орбиталь имеет один центр — ядро атома, мо.пекулярная орбиталь в двухатомной молекуле имеет два центра, ядра А и В. Здесь в отличие от атома уже не все направления в пространстве равноценны. Между ядрами возникает сильное электрическое поле. Таким образом, направление межъядерной оси — особое направление в пространстве для молекулярного электрона, направление электрического поля ядер. Симметрия МО относительно этой оси определяет ее главные свойства. Вектор орбитального момента импульса электрона I прецессирует вокруг межъядерной оси, так что его проекция на ось равна  [c.105]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]


    Атомные ядра и электроны, имея определенный электрический заряд, могут обладать и некоторым магнитным моментом, причем у ядра он примерно на три порядка меньше, чем у электрона. Молекула как система, состоящая из этих заряженных частиц, также может -характеризоваться вектором магнитного момента, который связан главным образом с орбитальным и спиновым движениями электронов. Еще одной характеристикой молекулы является тензор магнитной восприимчивости. Этими свойствами и определяются явления, происходящие при нахождении молекулы в магнитном поле. К важнейшим физическим методам исследования, связанным с изучением результатов взаимодействия молекул вещества с постоянным и переменным внешними магнитными полями, относятся методы радиоспектроскопии ЯМР и ЭПР. [c.6]

    С точки зрения ядерной физики изотопы одного и того же элемента отличаются не только и не столько по массе атомного ядра, сколько по своим свойствам, проявляющимся в ядерных реакциях. Коллективы разных количеств нуклонов при одинаковом числе протонов образуют качественно различные квантовомеханические системы, поскольку связь нуклонов в ядре определяется главным образом их сильным взаимодействием. Системы уровней возбуждения ядер разных изотопов отличаются качественно — и по энергиям и по квантовым числам этих уровней.  [c.7]

    Ионизационный потенциал является одним из небольшого числа существенных свойств атома, которые могут быть непосредственно измерены. Поэтому крайне важно выяснить влияющие на него факторы . Именно такие факторы помогают понять многие закономерности периодической системы. Для ионизационного потен циала наиболее важными будут величина заряда ядра расстоя ние внешнего электрона от ядра, т. е. атомный радиус экранирующий эффект нижележащих электронных подуровней, характери зующийся постоянной экранирования насколько внешний элек трон проникает в электронные облака нижележащих электронов В отношении последнего свойства найдено, что степень проникно вения электронов в главный квантовый уровень уменьшается в по рядке S > р > d > /. Это соответствует прочности связи электронов /75-электрон связан прочнее, чем пр-электрон, который в свою Очередь связан прочнее, чем a-электрон, и т. д. [c.117]

    Главнейшие свойства атомного ядра [c.48]

    Рассмотрим прежде всего переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом главную роль играют электроны, находящиеся на внешнем электронном уровне атома. Электроны внешнего энергетического уровня являются валентными. Состав внешнего энергетического уровня атома элементов периодической системы с возрастанием порядкового номер а изменяется периодически. [c.191]

    Химические свойства всех изотопов любого элемента в основном одинаковы. Эти свойства определяются главным образом атомным номером ядра, а не его массой. [c.80]

    Б главной подгруппе V группы два элемента обнаруживают как неметаллические, так и металлические свойства. Это сурьма и висмут. Их применяют в небольших количествах в качестве добавок к сплавам. Сульфид сурьмы содержится в горючих составах для спичек. Соединения висмута и сурьмы используются в медицине например, бинты для перевязки ожога, мазь и порошок от ожога содержат нитрат висмута. Висмут является последним устойчивым элементом периодической системы все элементы с большим номером радиоактивны, т. е. их атомные ядра, испуская элементарные частицы, превращаются в более легкие ядра. [c.91]

    Так было найдено главное свойство атомов, определяющее их место в естественной последовательности элементов — положительный заряд атомного ядра. По предложению советских ученых число, выражающее величину этого заряда, а следовательно и порядковый номер элемента, называют теперь числом Менделеева. [c.202]

    Причина периодичности свойств элементов, открытая Д. И. Менделеевым, заключается, следовательно, в том, что по мере возрастания числа электронов, окружающих ядро, наступает такая стадия, когда заканчивается заполнение данного электронного слоя и начинается заполнение следующего. При этом элементы с одним, двумя, тремя и т. д. электронами в этом новом наружном слое воспроизводят химические свойства элементов, имевших также один, два три и т. д. электронов в предшествовавшем, теперь уже глубинном слое. Причина послойного расположения электронов в атоме стала ясна в 1925 г., когда Паули сформулировал принцип запрета , согласно которому на одном энергетическом уровне (в атоме, молекуле) может находиться не более двух электронов, причем эти электроны должны иметь противоположно ориентированные спины. Периодически меняются не только химические свойства элементов, но и многие их физические свойства, такие как атомный объем, коэффициент объемного сжатия, коэффициент теплового расширения, электропроводность, температура плавления и т. п., т. е. именно те свойства, которые связаны главным образом с наружными электронными слоями, тогда как свойства, связанные с глубинными слоями, меняются монотонно без какой-либо периодичности (атомная масса, характеристи- [c.7]


    Работы Мозли вскрыли главное свойство атомов — положительный заряд атомного ядра. Но и они никаких изменений в установленную Менделеевым последовательность элементов не внесли. Исследования Мозли лишь доказали справедливость сделанных Менделеевым отступлений от расположения элементов в порядке возрастания атомных весов и подвели под закон более строгую, более современную в научном отношении базу. [c.214]

    Настоящая глава посвящена главным образом рассмотрению влияния различных факторов на скорость радиоактивного распада ядер. Попытаемся изложить основы теории, описывающей скорость радиоактивных процессов в зависимости от изменения энергии (АЕ), спина (А/) и четности (АП) при распаде. Полученные зависимости будут сопоставлены с экспериментальными данными. Помимо объяснения свойств самих процессов распада, коснемся также тех сведений о свойствах энергетических уровней ядер (расстояние между уровнями, спины, четность ), которые могут быть получены при изучении радиоактивного распада и крайне необходимы для систематического изучения ядерных свойств и построения различных моделей атомного ядра, обсуждаемых в гл. IX. Само собой разумеется, что разработка и проверка каждой из этих моделей в свою очередь стимулировала проведение большого числа работ по ядерной спектроскопии.  [c.225]

    В настоящее время известно, что протон и электрон — главные составные части электричества — одновременно являются и основой материи (атомные ядра и оболочки). Таким образом, каждое вещество может быть представлено в виде очень сложного силового поля. Посредством рассмотрения внутреннего поля можно прийти к электрической теории свойств тела. С другой стороны, исследуя действие одного из приложенных к телу внешних полей, можно получить данные относительно электрических свойств вещества. Вопросы о том, как проявляются эти электрические свойства во взаимодействии внешнего и внутреннего полей, являются предметом рассмотрения настоящего раздета. [c.626]

    Атомные массы элементов в периодической таблице, например, являются средним значением из массовых чисел природных смесей изотопов. Поэтому они не могут, как предлагал Д. И. Менделеев, служить главной характеристикой атома, а следовательно, и элемента. Такой характеристикой, как мы теперь знаем, является заряд ядра. Он определяет число электронов в нейтральном атоме, которые распределяются вполне определенным образом вокруг ядра. Характер же распределения электронов определяет химические свойства атомов. Указанные соображения позволили дать новое определение химического элемента и уточнить формулировку периодического закона  [c.24]

    Как указывалось, главной характеристикой атома ныне является не атомная масса, а положительный заряд ядра. Это более общая и точная характеристика атома, а значит, и элемента. Заряд ядра определяет число электронов в электронной оболочке атома, ее строение, а тем самым все свойства элемента и его положение в периодической системе. В связи с этим претерпела изменение и формулировка закона. [c.31]

    Учение о строении атомов вскрыло глубокий физический смысл периодического закона. Как указывалось, главной характеристикой атома ныне является не атомная масса, а положительный заряд ядра. Это более общая и точная характеристика атома, а значит, и элемента. Заряд ядра определяет число электронов в электронной оболочке атома, ее строение, а тем самым все свойства элемента и его положение в периодической системе. В связи с этим претерпела изменение и формулировка закона. [c.53]

    ТРЕТИЙ короткий период также состоит из 8- и р-элементов. В связи с ростом главного квантового числа уменьшается энергия связи внешних электронов с ядром и увеличивается размер внешних атомных орбиталей. Поэтому электроотрицательность элементов третьего периода меньше, чем элементов второго периода. По сравнению со вторым периодом увеличивается размер электронного остова - он включает уже 10 электронов 1з 28 2р (оболочка неона - [Ne]). Образование р -р -связей практически невозможно из-за увеличения остова, поэтому, в частности, все простые вещества от натрия до серы представляют собой не молекулярные вещества, а металлические или атомные кристаллы. При этом внутри каждой группы элементы второго и третьего периодов близки по свойствам, так как их электронные конфигурации аналогичны, они различаются лишь главным квантовым числом. Элементы первых трех периодов Менделеев назвал типическими -в них выражены, как в образцах и в наиболее ясной форме, все виды и свойства, но и со своими особенностями . [c.238]

    ПЯТЫЙ длинный период отличается от четвертого общим уменьшением электроотрицательности, усилением металлических и ослаблением неметаллических свойств. Это обусловлено ростом главного квантового числа валентных электронов и, соответственно, уменьшением энергии связи внешних электронов с ядром и увеличением размеров внешних атомных орбиталей. В целом же картина повторяется период начинается з-элементами - активными металлами рубидием и стронцием, затем следует вставная декада -элементов - второй переходный ряд элементов от иттрия до кадмия и завершается период р-элементами от индия до ксенона. [c.239]

    Число протонов в ядре атома принято называть порядковым (атомным) номером и обозначать буквой Z. Оно совпадает с числом электронов, окружающих ядро, поскольку атом должен быть электрически нейтральным. Массовое число атома равно полному числу содержащихся в нем тяжелых частиц протонов и нейтронов. Когда два атома сближаются на достаточное расстояние, чтобы между ними возникло химическое взаимодействие-или, как принято говорить, химическая связь,-каждый атом ощущает главным образом наличие самых внешних электронов другого атома. Поэтому именно эти внещние электроны играют определяющую роль в химическом поведении атомов. Нейтроны в составе ядра оказывают ничтожное влияние на химические свойства атомов, а протоны важны постольку, поскольку они определяют число электронов, которые должны окружать ядро нейтрального атома. Все атомы с одинаковым порядковым номером ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного и того же химического элемента. Каждому элементу присвоено определенное название и одно- или двухбуквенный символ (обычно заимствованный от греческого или латинского названия). Например, символ углерода-С, а символ кальция-Са. В качестве символа натрия. Ка, взяты две первые буквы его латинского (и немецкого) названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице- атомных масс элементов, помешенной на внутренней стороне обложки книги, приведен алфавитный перечень элементов и их символов. [c.15]

    Атом — наименьшая электронейтральная частица химического элемента, являющаяся носителем епз свойств. Каждому химическому элементу соответствует определенный вид атомов. А. состоит из ядра и электронной оболочки. Масса А. сосредоточена в ядре, которое характеризуется положительным зарядом, численно равным порядковому номеру (атомному номеру). См. Ядро апюшюв. А. в целом электронейтра-лен, поскольку положительный заряд ядра компенсируетт я таким же числом электронов. См. Электрон. Электроны могут занимать в атоме положения, которым отвечают определенные (квантовые) энергетические состояния, называемые энергетическими уровнями. Число энергетических уровней определяется номером периода, в котором находится данный элемент. Число электронов, которые могут заселять данный энергетический уровень, определяется ло формуле N = 2п , щеп — номер уровня, считая от ядра. т.е. главное квантовое число. Согласно квантовой теории невозможно одновременно и абсолютно точно определить энергию и местоположение электрона. Можно лишь говорить о нахождении электрона в определенном объеме пространства, что собственно и представляет собой атомную орбиталь (АО). Электрон заполняет пространство вокруг атомного ядра в форме стоячей волны, которую можно представить как электронное облако. Плотность электронного облака, понимаемого как облако электрического заряда электрона, — электронная плотность, различна и зависит от того, насколько электрон удален от ядра. [c.38]

    Начиная с работ Кюри, химики всегда играли главную роль в фундаментальных исследованиях радиоактивности и свойств ядер, а также в разработке методов применения радиоактивных веществ в других областях. Так, Нобелевская премия 1944 г. за открытие деления ядер была присуждена химику Отто Гану. В 1951 г. Нобелевская премия за открытие двух первых в Периодической системе трансурановых элементов была присуждена химику Гленну Сиборгу и его коллеге — физику Эдварду Мак-Миллану. Большая часть достижений в нашем понимании природы атомного ядра — это плод совместной работы химиков и физиков, где искусство и подходы дополняют друг друга. Более того, использование явления радиоактивности и основанных на ней методов в таких различных областях J aк биология, астрономия, геология, археология и медицина, а также в различных областях химии до сих пор было и продолжает оставаться ареной пионерских работ специалистов, получивших подготовку по ядерной химии. Поэтому ядерная химия имеет междисциплинарный характер. [c.200]

    Главное свойство таких атомов-близнецов — число Менделеева (заряд ядра) — совершенно одинаково. Так, например, все без исключения атомные ядра металла калия имеют по 19 положительных зарядой, металла урана — по 92 и т. д. Но вес ядер атомов-близнецов, составляющих один и тот же элемент, может несколько различаться. Среди атомов калия одни имеют атомный вес 39, другие—40, третьи даже—41. В природном уране на каждый атом с атомным весом 234 поиходится 117 атомов с атомным весом 235 и 16 550 атомов с атомным весом 238. [c.227]

    Рассматривая физические и химические свойства лантапидов, необходимо учитывать особенности изменения атомных и ионных радиусов этих элементов. Из табл, 1.7 видно, что атомные, а также ионные радиусы от Ьа к Ьи уменьшаются У по величине радиуса близок к ТЬ н Оу, а 5с — к Ьи. Уменьшение радиуса лаитанидов с ростом их атомного номера носит название лантанидное сжатие . Причиной лантанидного сжатия является возрастающее притяжение внешних электронных оболочек (характеризующихся главным квантовым числом /г=5 и л=6), увеличивающимся от Ьа к Ьи зарядом ядра. В одной клетке периодической системы вместе с Ьа располагается еще 14 элементов, тогда как в клетках более легких элементов-аналогов подгруппы скандия (8с, У) в I и П большом периодах находится только по одному элементу. Поэтому явление, аналогичное лантанид1гому сжатию, в этих периодах не наблюдается. В то же время величины атомных и ионных радиусов переходных элементов, стоящих в П1 большом периоде за Ьа—Ьи, из-за лантанидного сжатия очень мало отличаются от таких же величин для их легких аналогов. Так, практически одинаковы радиусы 2г и Н1, мало различаются радиусы МЬ и Та, и дальше по периоду влияние лантанидного сжатия продолжает еще долго сказываться. [c.67]

    Итак, состав ядер атомов различных химических элементов не одинаков,а потому элементы отличаются по атомной массе.И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента 2, то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства хн.мического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой шпома, а значит, и элемента. На этой основе дапо более точное определение химического элемента (с. 5), понятие о котором является в химии основным. [c.22]

    Главной характеристикой атома являлась его атомная масса (теперь положительный заряд ядра). В своей книге Основы химии Д. И. Менделеев писал Масса вещества есть именно такое свойство его, от которого долгктгы находиться в зависимости все остальные свойства. Поэтому ближе или естестпсннее всего искать зависимость ме -кду свойствами н сходствами элементов, с одрюй стороны, и атомными их весами — с другой  [c.24]

    Ядро занимает лишь незначительную часть обш его объема атома, хотя концентрирует почти всю массу атома. Вокруг ядра группируются электроны. Оин вносят очень небольшой вклад в обшую массу атома, но зато занимают большой объем и обусловливают размеры атома. Главная концепция современной теории микромира состоит в том, что в атомной шкале частицы и волны незаметно переходят друг в друга, т.е. частицы имеют свойства воли, а волны - свойства частиц. Несмотря на то, что волновая природа фотонов (то есть света) была установлена давно, почти инкто до 1925 г. не принимал всерьез точку зрения, согласно которой вещество (например, электроны, атомы) подобно волне, а не корпускулярно. Но в 1925 г. Дэвиссон и Джермер открьпш дифракцию (т.е. волновые свойства) электронов на кристаллической решетке. Опыт по дифракции, позднее проведенный с другими частицами, включая молекулярный водород, четко показал, что частицы имеют волновые свойства. [c.5]

    Так как у элементов одного периода электроны заполняют оболочку с одним и тем же главным квантовым числом, атомные (а также ковалентные и ионные) радиусы при переходе от щелочного металла к благородному газу у меньшаются, а в грулшах (особенно в подфуппах А) с ростом порядкового номера увеличиваются. Таким образом, по диагонали Периодической системы встречаются атомы элементов с примерно одинаковыми атомньпш радиусами, а значит со сходными свойствами. Периодичность в изменении химических свойств элементов объясняется периодичностью повторения сходных электронных конфигураций с ростом заряда ядра или порядкового номера элемента, например, периодически изменяется электроотрицательность - условная величина, характеризующая способность атома в молекуле к притяжению валентные электронов. В табл. 2.2 приведены значения электроотрицательностей химических элементов. Как видно, для элементов подфупп А электроотрицате.льность растет в периодах и падает в грулшах с увеличением порядкового номера. Периодически меняются и л агнитные свойства переходных металлов. [c.21]

    Перед детальным обсуждением структурной химии этих элементов необ.ходимо обратить внимание на одну особенность, прису-П1ую. многим из нпх. Уже от.мечалось ранее, что элементы Си, Ag и Аи могут использовать для связи d-электроны с главным квантовым числом на единицу меньшим, чем у s- и р-орбиталей, причем медь может терять 1 или 2 Зс -электронов и образовывать ионы Си + и Си +. Однако некоторые элементы последующих Б-подгрупп ведут себя совершенно иначе. Кроме образования обычного иона с потерей всех N электронов внешней оболочки N — номер группы в периодической системе) может происходить потеря только р-электронов, а пара s-электро-пов оставаться связанной с ядром в виде так называемой инерт-нон пары. В случае одноатомного иона это означает, что М должен иметь по крайней мере 3 электрона в валентной оболочке и, следовательно, необходимо искать подтверждения факта существования ионов у металлов группы П1Б и нонов в группе IVB. В состоянии одноатомного газа ртуть сохраняет структуру 78 (2) тогда ион (Hg—ng) + (еслн бы такой свободный ион существовал) сохранял такой же эффективный атомный номер (к этому вопросу мы вернемся позже). Чрезвычайно низкую степень ионизации галогенидов ртути Сиджвик рассматривал как доказательство инертности пары бх-электро-нов Hg, однако нет сомнения в том, что в кристаллическом HgFa (структура флюорита) присутствуют ионы Hg +. Доказательство существования нонов можно получить, изучая свойства соединений в растворах нли в расплавах, а также природу нх кристаллических структур. [c.287]


Смотреть страницы где упоминается термин Главнейшие свойства атомного ядра: [c.160]    [c.263]    [c.202]    [c.263]    [c.350]    [c.26]    [c.46]    [c.29]    [c.72]    [c.35]    [c.35]    [c.43]    [c.70]    [c.521]   
Смотреть главы в:

Химия и периодическая таблица -> Главнейшие свойства атомного ядра




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро

Свойства атомных ядер

Свойства ядра



© 2025 chem21.info Реклама на сайте