Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграмма, давление состав критическая област

    Вытеснение нефти обогащенным газом основано на закачке смеси углеводородных газов с определенным содержанием фракций 2-6 и 7+. Точка на тройной диаграмме, соответствующая составу нагнетаемого в пласт газа, располагается правее разделительной линии МЫ (см. рис. 5.72). В результате конденсации газа в пластовой нефти после нескольких этапов их контактирования на фронте вытеснения образуется смесь критического состава В, которая способна смешиваться в любых пропорциях с вытесняемой пластовой нефтью. Необходимо отметить, что если состав газа соответствует левой области диаграммы, формирование критического состава не достигается. По сравнению с методом закачки сухого газа вытеснение нефти с конденсацией обогащенного газа реализуется при меньших давлениях (10—20 МПа). Закачка обогащенного углеводородного газа более эффективна на месторождениях с плотностью нефти до 825 кг/м . При больших плотностях нефти расход газа для создания зон смешения резко возрастает. Особенность технической реализации закачки обогащенного газа состоит в необходимости обеспечения строгого контроля за составом закачиваемого газа. [c.312]


    С, и при давлениях до 700 атм представлены в виде диаграммы давление — состав на рис. 14. Из рисунка видно, что по мере движения критической кривой в направлении критической точки водорода (—239,9 °С и 12,8 атм) она должна проходить через максимум, соответствующий давлению значительно выше 1000 атм. При экстраполяции кривой в область более высоких давлений она, возможно, проходит через температурный минимум, после чего вновь движется к более высоким температурам и давлениям. Если [c.46]

    С появлением в системе второго компонента изменяются также и диаграммы давление-температура. Кривые точек начала кипения и точек росы не совпадают и образуют фазовую диаграмму, на вид которой, кроме температуры и давления, влияет исходный состав смеси. Крайние левая и правая кривые на диаграмме (см. рис. 56, б) соответствуют давлениям насыщенного пара для чистых компонентов - этана и н-гептана с критическими точками С2 и С7. Между ними расположены фазовые диаграммы смесей этана с н-гептаном с содержанием этана 90,22 50,25 и 9,8 мас.% с соответствующими критическими точками С, С и С ". Пунктирная линия представляет собой огибающую критических точек системы этан-н-геп-тан. Линии Л]С, А2С и Л3С " - кривые точек начала кипения рассматриваемых смесей (выше и слева от них смесь находится в жидком состоянии), В]С В2С и В С -линии точек росы соответствующих смесей. Ниже и справа от этих линий смесь находится в газообразном состоянии. Между кривыми точек начала кипения и точек росы расположена двухфазная область. Из рис. 56, б следует, что с увеличением содержания н-гептана в системе критическая точка, находящаяся вначале слева от максимальных значений давления и температуры, при которых две фазы могут существовать в равновесии, сдвигается вправо. Кривые точек росы и начала кипения при этом приближаются к кривой давления насыщенного пара преобладающего в смеси компонента - н-гептана. Аналогично изменяются также критические температуры и давления при изменении состава смеси. [c.126]

    Для иллюстрации влияния на фазовые состояния давления, температуры и состава конкретных углеводородов рассмотрим поведение их бинарных смесей с метаном. На рис. 59 изображены диаграммы равновесных составов газовой и жидкой фаз смесей метана с парафиновыми углеводородами нормального строения для температуры 80°С в координатах давление-состав системы. Смысл графиков, приведенных на рис. 59, такой же, как и на рис. 58. Здесь кривая точек начала кипения (левая ветвь) и кривая точек начала конденсации (правая ветвь) соединяются в критической точке. Между ними заключена область двухфазного состояния. Левее и выше кривой точек начала кипения расположена область жидкого состояния системы, а правее и ниже кривой точек росы - область парообразного состояния. Как было упомянуто, кривые представляют собой изотермы, и, следовательно, точки, лежащие на одной горизонтали и принадлежащие линиям начала кипения и конденсации, имеют одинаковые давления и температуру. Составы в этих точках аналогичны составам сосуществующих фаз (жидкой и газообразной). Например, для системы метан-Су [c.127]


    Закачка сухого газа высокого давления была предложена впервые в СССР в конце 40-х годов. Процесс вытеснения нефти из пласта углеводородными газами высокого давления базируется на взаимодействии родственных по составу систем, в соответствии с их свойствами, давлением и температурой, В результате нагнетания газа высокого давления образуется переходная вытесняющая зона, которая отличается по свойствам как от нефти, так и от нагнетаемого газа. Свойства этой зоны формируются, с одной стороны, за счет насыщения нефти промежуточными компонентами из газа, а с другой, — за счет насыщения компонентами нефти нагнетаемого газа. Состав этой переходной зоны можно определить из треугольной диаграммы ( ис. 5.72), отражающей состав и фазовое состояние системы при реализации метода. В пласт с нефтью состава L подается сухой газ состава С. Так как линия ЬС пересекает двухфазную область, эти среды непосредственно не могут смешаться друг с другом, хотя и имеют в принципе одинаковую углеводородную природу. Но по мере продвижения газа д в пласте вследствие испарения нефти он постепенно обогащается тяжелыми компонентами (фракциями С2-6 и С7-1-), пока не достигнет критического состава В. Такой обогащенный в пласте газ смешивается в любом соотношении с пластовой нефтью или с любой углеводородной системой с составом, соответствующим области правее линии ММ. [c.308]

    Заметные изменения в виде фазовых диаграмм часто вызваны изменениями температуры и давления. Рис. 5.17 иллюстрирует это положение на примере смесей этана и н-гептана. Изоплета (рис. 5.17,д) показывает критические точки, а также максимумы температуры и давления для двухфазных огибающих. Диапазон областей, в которых возможно существование двух фаз, резко сужается с повышением давления в системе. Давление оказывает значительное влияние на состав азеотропных систем. Для системы вода -I- этанол, например, соответствующие давления-(Р, мм рт. ст.) и составы азеотропов (НгО, масс. %) меняются с повышением давления следующим образом 94,9 и 0,5, 200 и [c.262]

    На рис. 5.21,а приведена диаграмма Р—х подобной системы. Показанное на диаграмме отклонение от идеальности, часто весьма заметное в закритических областях, обычно ведет к существенному повышению содержания нормально конденсирующихся веществ в жидкой фазе. Жидкая фаза, состав которой соответствует точке а на диаграмме, содержит некоторое количество твердой фазы, которая становится жидкой, если давление снижается (точка Ь диаграммы). Реальные системы показаны на рис. 5.21,6, виг. Растворимость нафталина в этилене минимальна вблизи критической точки растворителя, но затем резко возрастает с повышением давления. Как следует из рис. 5.27,в, аналогичным образом ведут себя и другие твердые фазы, растворимые в этилене такое же влияние оказывает на [c.275]

    Отметим в заключение некоторые особенности диаграмм поверхностного натяжения. По экспериментальным данным можно построить две изотермы поверхностного натяжения, считая его функцией состава фазы (а) или фазы (р). Поскольку составы фаз при равновесии однозначно связаны друг с другом, обе эти изотермы в термодинамическом отношении равноценны и являются характеристикой состояния системы. Это верно и для систем жидкий раствор — пар, хотя в таких системах вдали от критической точки поверхностное натяжение создается в основном жидкой частью поверхностного слоя (см. 8 главы П1). Поэтому, зная изотерму состава пара, всегда можно построить изотерму поверхностного натяжения в переменных состава пара, как показано на рис. 11. Полученные таким образом диаграммы поверхностного натяжения напоминают аналогичные диаграммы для температуры или давления с той разницей, что области, лежащие выше и ниже изотерм поверхностного натяжения, не имеют физического смысла, так как любая диаграмма поверхностного натяжения может относиться только к двухфазному равновесию. Использование изотермы поверхностного натяжения в переменных состава пара оказывается полезным при нахождении состава поверхностного слоя (см. главу VI, 6), так как пар часто можно считать идеальным, что значительно упрощает термодинамические расчеты. Если же найден и состав поверхностного слоя как функция состава раствора и [c.113]

Рис. 09. Диаграмма физического состояния углеводородных систем при заданных температуре и давлении / - кривая раздела фаз (граница двухфазной области) 2 - связывающая линия 3 - двухфазная область 4,7 - кривые составов насыщенного пара и контактирующей с ним жидкости 5 - газ 6 - нефть 8 - состав смеси, находящейся при данных давлении и температуре в критической точке 9, 0 - критические составы, смешивающиеся с нефтью (9) и газом (70) Рис. 09. <a href="/info/1494078">Диаграмма физического состояния</a> углеводородных систем при <a href="/info/1681380">заданных температуре</a> и давлении / - кривая раздела фаз (<a href="/info/1711739">граница двухфазной области</a>) 2 - связывающая линия 3 - <a href="/info/224199">двухфазная область</a> 4,7 - кривые составов <a href="/info/6006">насыщенного пара</a> и контактирующей с ним жидкости 5 - газ 6 - нефть 8 - <a href="/info/592978">состав смеси</a>, находящейся при <a href="/info/39589">данных давлении</a> и температуре в <a href="/info/3547">критической точке</a> 9, 0 - критические составы, смешивающиеся с нефтью (9) и газом (70)

    На рис. 2.15 приведена диаграмма состав — удельный объем для системы метан—н-бутан—декан при давлении 70,3 кПсм . На нем показаны кривые точек росы и точек кипения и несколько соединительных линий. В однофазной области поведение отображается линейчатыми поверхностями, а в гетерогенных областях — неплоской поверхностью, описываемой прямой линией. Легко понять, что прогнозирование сложной картины объемного поведения многокомпонентных систем или даже его графическое изображение является трудной задачей. Естественны обобщающий подход к ее решению предложил Кэй в работе [15]. Для многокомпонентных систем он ввел понятие псевдокритического состояния, аналогичное понятию критического состояния для чистых веществ, с,чужащее основой для корреляции свойств подобных смесей. Определение параметров псевдокритических состояний для многокомпонентных систем сопряжено с известными трудностями. [c.31]

    Каждая фигуративная точка внутри этой диаграммы отвечает некоторому произвольному сочетанию температуры, давления и общего состава системы. При достаточно высоких температурах оба компонента независимо от давления и состава системы находятся в газообразном состоянии, обра- зуя выше критической темпера-, туры газ, а ниже критической тем- пературы ненасыщенный пар. Поверхность ткпрдо, образующая нижнюю границу области газообразного состояния, соответствует насыщенным парам, состав которых, конечно, зависит от давления и температуры. [c.48]


Смотреть страницы где упоминается термин Диаграмма, давление состав критическая област: [c.9]    [c.104]    [c.282]   
Химическая термодинамика (1950) -- [ c.618 ]




ПОИСК





Смотрите так же термины и статьи:

Давление диаграмма

Давление критическое

Давление критическое Критическое давление

Давление области

Критическая область



© 2025 chem21.info Реклама на сайте