Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Корреляции количественные структура—свойство

    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]


    Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) как функции главного в химии аргумента — молекулярной структуры. Подобные функциональные зависимости в принципе невозможно установить на примере одного соединения. Чтобы изучить или хотя бы обнаружить функциональную зависимость, надо проварьировать аргумент, т.е. изучить серию соединений различной структуры. Изменения структуры органического соединения могут происходить только дискретно, скачками, и какими бы минимальными они ни были, они в той или иной мере сказываются на всем комплексе свойств вещества. Поэтому любое органическое соединение представляет собой неповторимую химическую индивидуальность с единственной конкретной структурой и единственным набором свойств. Именно поэтому закономерности типа структура — свойство могут быть выражены в количественном виде лишь для ограниченного круга задач и объектов (как, например, это удается сделать в гамметовских корреляциях свободной энергии или в рассмотренном выше случае оценки зависимости цветности азокрасителей от природы хромофоров). В большинстве же случаев эти закономерности носят чисто качественный характер, и в поиске вещества с заданными свойствами неизбежен эмпирический подход, который предполагает синтез и всестороннее исследование серий родственных соединений с планомерно варьируемыми свойствами.  [c.53]

    В ряде работ предприняты попытки найти корреляции между электрокаталитической активностью и физико-химическими свойствами металлов и сплавов. Высказано предположение, что высокие электрокаталитические свойства платиново-рутениевых сплавов объясняются особенностями их электронной структуры. Количественной характеристикой электронной структуры служит.число неспаренных -электронов, приходящееся на атом катализатора. Число -электронов на атом для Р1 и Рс1 равно 0,6, для КЬ — 1,4, для 1г — 1,7, для Ни — 2,2. Для гомогенных сплавов предполагается линейная зависимость числа неспаренных -электронов от состава сплава. Повышенная активность связывается с оптимальным числом неспаренных -электронов. Активность электрокатализаторов сопоставлена с их парамагнитной восприимчивостью, с теплотами сублимации металлов и сплавов, работой выхода электронов, сжимаемостью и другими характеристиками. К сожа- [c.300]

    Аналогично этому в системе ПММА—МБС также имеется область оптимальных значений параметров фазовой структуры смеси, обеспечивающих максимальный уровень ударопрочности. В связи с этим, одной из важных задач изучения гетерогенных систем типа стекло— эластомер является количественное исследование корреляции структура—свойства, а также поиск эффективных путей регулирования фазовой структуры как при полимеризации, так и при переработке. [c.56]


    Сакраментальная фраза о том, что свойства полимеров определяются их строением долго оставалась общим местом, универсально справедливым, но отвлеченным, до тех пор пока не были освоены надежные методы исследования структуры полимеров и разработаны количественные показатели характеристики их свойств. Открытие стереоспецифической полимеризации и синтез полимеров, в которых тонкие особенности микроструктуры цепей действительно решающим образом влияли на физико-химические свойства, вызвали поток разнохарактерных исследований. Общей целью этих работ было установление количественных корреляций между структурой и свойствами новых материалов. Решению этой задачи было посвящено огромное число как выдающихся и интересных, так и довольно тривиальных публикаций. Огромная, если пе доминирующая, часть этих работ касается полиолефинов, ставших предметом качественных, модельных, поисковых, прикладных и строго количественных исследований. Каждая выполненная работа давала свой больший или меньший вклад в решение общей проблемы нз массы фактов, кажущихся иногда разрозненными, постепенно возникала и быстро становилась понятной и уже привычной картина многочисленных, твердо установленных связей мел<ду строением полиолефинов и их свойствами. [c.6]

    Проведенные исследования позволили установить характер влияния условий полимеризации на молекулярно-массовое распределение (ММР) и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков и предложить рациональные пути получения полимеров с оптимальными молекулярными параметрами. Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их свойствами в широком интервале температур. Установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния ММР на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования. [c.16]

    Таким образом, проведенные в последние годы исследования привели к установлению факта существования в полимерах широкого набора дискретных надмолекулярных стр уктур. Изучение внутренней структуры простейших морфологических форм позволило установить принцип упаковки макромолекул в кристаллах. Эти результаты дали возможность предложить современную. модель кристаллического полимера в виде однофазной модели дефектного кристалла. В соответствии с этой моделью, при нахождении корреляций между свойствами и структурой полимерного материала необходимо принимать во внимание такие структурные параметры, как размеры кристаллических структур, форму и раз-.меры элементарных структурных элементов и характер их упаковки. Поэтому для кристаллических поли.меров, так же как и для традиционных материалов на основе низномол вкулярных соединений, одной из первостепенных задач становится задача нахождения методов количественного описания с помощью этих параметров надмолекулярной организации материала. [c.50]

    Кроме сравнительно небольшого числа работ, в которых предложены количественные соотношения между структурой и свойствами эпоксидных полимеров, в литературе имеется огромное количество данных о качественном влиянии тех или иных изменений в химическом строении на различные характеристики эпоксидных полимеров [30—38]. Так, существует много данных о влиянии молекулярной массы эпоксидного олигомера на Тс полимера [34—36], причем последняя обычно повышается с уменьшением Мс. Беккер [30] указывает па линейную зависимость температур стеклования от Пс в процессе отверждения, что дает возможность контролировать технологические процессы. Между многими свойствами, наиример Тс — Е, 7 с —ТКИ, Е — С и др. наблюдается линейная корреляция, пример которой приведен на рис. 3.1. Это связано с тем, что все указанные х.э-рактеристики зависят от одних и тех же структурных параметров и обусловленного ими межмолекулярного взаимодействия, в частности от Мс (рис. 3.2). [c.57]

    В настоящее время предложено много моделей прежде всего для количественного объяснения термодинамических свойств воды или растворов электролитов. Часто, однако, они не настолько детальные, чтобы их можно было в микромасштабе сопоставлять со структурными, спектроскопическими и релаксационными измерениями. Используя коррелятивные функции, можно количественно описать общие пространственно-временные или бинарные функции распределения в данной модели и таким образом обеспечить более полное количественное описание жидкостей, которое можно детально сопоставить с экспериментальными данными. Приведенные в разд. II коррелятивные функции в первом приближении пригодны для количественной интерпретации данных, однако они являются предварительными и слишком грубыми для полного и однозначного описания динамики и пространственной корреляции в воде или ионных растворах. Построение более реалистических пространственно-временных коррелятивных функций для воды и ионных растворов остается насущной, хотя и сложной проблемой, так как эти функции должны учитывать структуру, частоты колебаний, образование связей, релаксационные процессы и взаимозависимость этих факторов. [c.300]


    Таким образом, можно сделать вывод, что физико-механические свойства густосетчатых полимеров в стеклообразном состоянии в конечном счете определяются молекулярным уровнем их структурной организации. Это, очевидно, является весьма счастливым обстоятельством. Во-первых, потому, что с практической точки зрения особый интерес представляет нахождение количественной корреляции физико-механических сюйств полимера именно с молекулярной структурой, поскольку это открывает перспективы прогнозирования для выбора мономеров такого строения, полимеры которых характеризовались бы необходимыми физико-механическими свойствами. Во-вторых, в настоящее время уже имеются некоторые представления, позволяющие на основе полуэмпирических методов еще до синтеза с вполне достаточной для практических целей точностью на основе лишь данных о химическом строении предполагаемого полимера прогнозировать ряд его свойств. [c.235]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]

    Так как адсорбция ПАВ на данных покрытиях имеет физический характер, она количественно зависит от гидрофильногидрофобных свойств адсорбирующей поверхности [40]. Отсюда понятной становится корреляция между качеством ингибирования боковых граней печатающих элементов и гидрофильно-гидрофобными свойствами кислотоупорных покрытий, в случае гидрофильного покрытия, хорошо адсорбирующего органические компоненты эмульсии, поверхностная концентрация адсорбционных структур достаточна для ингибирования боковых граней (за счет миграции структур с покрытия на грань). С уменьшением гидрофиль-ности поверхности падает и адсорбция на ней защитных веществ, осуществляющаяся путем взаимодействия гидрофильных групп ПАВ с гидрофильной поверхностью покрытия. Уменьшение адсорбции ведет к ослаблению ингибирования боковых граней. [c.131]

    На основании приведенных выше данных можно предположить, что как число, так и длина проходных молекул и ресничек изменяются в зависимости от условий кристаллизации, и, таким образом, если не будет установлена количественная связь между указанными величинами, невозможно будет обсуждать корреляцию между тонкой структурой кристаллизующихся полимеров и их физическими свойствами. [c.223]

    Количественное испытание обычно дает гораздо больше для установления корреляции между искомым эффектом и структурой и, следовательно, для дальнейшего предсказания свойств, чем испытание сугубо качественного характера. [c.130]

    Отсутствие разработанной теории, связывающей структуру полимерного материала со свойствами, а также существенное влияние методов переработки приводят к тому, что на всех этапах технологических исследований комплекс свойств полимерного материала определяется экспериментальным путем. Недостаточное развитие методов количественной характеристики структур полимерных материалов затрудняет установление даже эмпирических корреляций между условиями синтеза, структурой и свойствами продуктов. Первоначальная роль теории реакторов сводилась к облегчению масштабирования процесса, при этом способ проведения процесса (в массе, растворе и т. д.) определялся еще на стадии лабораторных экспериментов. Необходимость хотя бы в грубых математических моделях возникла при автоматизации технологических процессов. Проблема оптимизации существующих производств стала актуальной, когда выяснилась недостаточная эффективность эмпирических решений. [c.330]

    Применение ПГХ для анализа нелетучих высокомолекулярных соединений основано на использовании предварительно устанавливаемой корреляции между составом, структурой или свойствами исследуемого вещества и составом образующихся нри его пиролизе продуктов. Поскольку до настоящего времени практически отсутствуют данные о деталях процесса термического разложения высокомолекулярных соединений разной природы в условиях ПГХ и состав продуктов пиролиза большинства соединений неизвестен, то эту корреляцию главным образом устанавливают эмпирическим путем. Изучение механизма деструкции различных высокомолекулярных соединений и состава образующихся при этом продуктов позволило бы существенно упростить выбор характеристических компонентов для идентификации и количественного измерения состава [c.37]

    Количественный анализ нелетучих высокомолекулярных соединений основан на корреляции измеряемой величины, характеризующей исследуемый образец, и содержания характеристического компонента в продуктах пиролиза. Поэтому градуировка при количественном определении сводится к анализу эталонных образцов известного состава и структуры, аналогичным исследуемым, и построению зависимостей в соответствии с выбранным методом интерпретации пирограмм, определяющимся аналитической задачей и свойствами образца. [c.121]

    Поскольку отсутствует единая теория, связывающая параметры структуры полимерного материала с его свойствами, то соответствующие корреляции приходится устанавливать экспериментальным путем. Исследования в этой области представляют самостоятельный интерес и выходят за рамки задач моделирования. Трудность решения этой проблемы обусловлена многими причинами. Известно, что способ приготовления образцов для физико-механиче-ских испытаний существенно влияет на их свойства. Получение строго количественной характеристики параметров структуры полимеров на данном этапе развития аналитической техники представляет часто непреодолимую трудность. Например, о проблемах, возникающих при анализе МВР и средних молекулярных весов такого классического полимера, как полистирол было достаточно сказано в гл. I. [c.129]

    Книга имеет весьма четкую структуру. В первых четырех главах дается общее введение и изложены вспомогательные методы в теории МО (вариационный и теоретико-групповой). Следующие три главы посвящены основе теории МО — приближению Хартри— Фока. При изложении методов построения одноэлектронных волновых функций (молекулярных орбиталей) приводится целый ряд конкретных рекомендаций, необходимых для расчета и не отраженных должным образом в других руководствах. Главы 8—Ю посвящены прямым неэмпирическим методам расчета орбиталей соответственно для атомов, двухатомных и многоатомных молекул. Здесь приведен большой объем фактического материала и наглядно показаны способы проведения конкретных расчетов орбиталей. В гл. И и 12 даны приближенные методы расчета МО, включая метод Хюккеля. В гл. 13 рассмотрены пространственная структура молекул и химические реакции. Определенным пробелом представляется отсутствие здесь анализа структуры координационных соединений, их каталитических свойств, поверхностных явлений. Теория химических реакций тоже дана весьма конспективно. В гл. 14 обсуждается корреляция электронов (здесь изложение уже выходит за рамки метода Хартри—Фока). В целом по отбору материала книга может служить справочным пособием, полезным в повседневной работе. В частности, следует отметить возможность ее использования при разработке программ расчета конкретных молекул. Резкое расширение приложений метода МО в первую очередь и было связано с появлением новых возможностей количественных расчетов на ЭВМ. Высказывалась даже точка зрения, что все определяется искусством составления удобных и компактных программ. На деле это совсем не так. Говоря [c.6]

    Наиболее важными свойствами, определяющими активность лекарственных препаратов, являются три физико-химических свойства липофильность, электронное распределение и форма молекул. Все они связаны с топологической структурой молекул, хотя этот факт, по-видимому, в значительной мере недооценивался. Тем не менее эти свойства были изучены с помощью соотношений линейности свободных энергий (ЛСЭ) [68] и количественных корреляций структура — активность (ККСА) [69]. Подробное обсуждение природы и действия этих двух методов можно найти в книге Зайделя и Шапера [70]. Первый метод основан на предположении, что всякий раз, когда функциональная группа присоединена к одному и тому же центру в молекуле, к полной реакционной способности молекулы будет добавлена или вычтена из нее фиксированная величина. Во втором методе делается предположение, что разнообразные роли, выполняемые функциональной группой в активной структуре, могут быть разделены. Статистика, основанная на множественной [c.201]

    Метод, разработанный Андерсоном, Бейером и Уотсоном [18[, несколько сложнее других методов, однако он позволяет более количественно проанализировать строение углеродного скелета молекулы. Согласно этому методу, молекула каждого соединения рассматривается как некоторое производное, полученное путем замеш,ения ряда атомов в исходной молекуле определенными группами. Так, например, структуру парафинов можно построить из исходной молекулы метана путем замещения атомов водорода соответствующими атомными группами. Аналогичным образом можно получить значения свойств для всех эфиров, используя в качестве исходного соединения диметиловый эфир и суммируя инкременты и термодинамические величины в соответствии со структурными модификациями, возникающими в процессе замещения отдельных групп. Отклонения от простого принципа аддитивности следует принимать во внимание в тех случаях, когда для каждого инкремента может существовать некоторый набор соответствующих структурных окружений. В связи с этим обычно рассматривают вклады от первичного метильного замещения, вторичного замещения метильных групп и вклады кратных связей (включая поправку за счет сопряженных двойных связей и двойных связей, сопряженных с кольцом). Термодинамические инкременты обычно связывают со структурой молекул при определении трех параметров АЯ/ д, и Ср°, гдеСр° = а + + 6Г- -с7 . Корреляция теплоемкости, зависящей от температуры, и двух других параметров позволяет рассчитать величины энергий Гиббса, энтальпий образования и энтропий газообразных молекул [c.165]

    Численные значения предельных температур отрицательной гидратации стехиометрических смесей ионов приведены в табл. И. Из данных таблицы следует, что между характером влияния стехиометрических смесей ионов на структуру воды и величиной Тдред существует хорошая качественная корреляция, т.е. чем сильнее выражены разрушающие свойства данной стехиометрической смеси ионов, тем дальше от 273 К отстоит температурная граница ее отрицательной гидратации. Значит, предельная температура может рассматриваться как количественная мера отрицательной или положительной гидратации ионов. [c.150]

    Корреляции термодинамических свойств идеальных газов с размерами и структурой молекул, многие из которых обобщил Янз [313], оказались очень плодотворными, но тем не менее в свойствах органических твердых веществ найдено очень мало полезных закономерностей. Как показывают результаты по изомерным гептанам (рис. 16), изменения в структуре кристаллов и фазовом поведении, которые часто бывают вызваны сравнительно маленькими различиями в строении молекул, резко влияют на теплоемкость органических твердых веществ. Члены гомологического ряда могут иметь различные кристаллические формы, так что соответственно различные вклады колебаний решетки в теплоемкость могут приводить к отсутствию каких-либо закономерностей в данных для всего ряда. Более значительные различия в теплоемкости обусловлены различиями в фазовом поведении (рис. 16). К сожалению, характер фазовых изменений каждого отдельного вещества обычно не может быть связан количественно с молекулярной или кристаллической структурой. Так, например, 2,2-диметилбутан [160] имеет втвердом состоянии два фазовых перехода с изотермическим изменением энтальпии, тогда как следующий гомолог, 2,2-диметилпентан, имеет только один нейзотермический переход без какого-либо изотермического энтальпийного инкремента. Очевидно, что результаты по этим двум соединениям не дают основания для предсказания свойств высших 2,2-диметилалканов. [c.64]

    Проведенное выше обсуждение термодинамических свойств кристаллических н-парафинов, алкенов-1, алкантиолов-1 и сложных эфиров жирных кислот показывает, что хотя у них и могут быть найдены некоторые закономерности, но различия в свойствах и поведении близких по строению соединений более значительны, чем сходство. Для количественной корреляции этих различий со строением молекул необходимо лучшее знание структуры и динамики кристаллов и характера фазовых превращений. Современные, пока еще далеко не полные данные о фазовых изменениях обсуждаются в следующем разделе. В настоящее время для практических целей более полезными оказываются эмпирические корреляции типа корреляций Арнета [23] и другие [548, 549, 648], чем теоретическая обработка. [c.69]

    Метод возмущенных угловых корреляций. Основным ограничением ЯГР-спектроскоиии является то, что эффект Мессбауэра удается наблюдать далеко не на всех элементах. Доиолнительные возможности исследования взаимодействия электронных оболочек атомов многих элементов с их ядрами связаны с наблюдением угловых корреляций, т. е. распределений по углам между направлениями вылета последовательно испускаемых ядром Р-частицы и у-кванта или двух у-квантов. Угол между этими двумя направлениями при такой каскадной, многоступенчатой дезактивации ядра не является однозначно заданным, и поэтому вид угловой корреляции проявляется с достаточной надежностью лишь в более или менее длительном эксперименте, при регистрации для каждого заданного угла между направлениями вылета большого числа Py" или у7 Совпадений, обеспечивающего необходимую статистич. (вероятностную) точность измерений. Характер угловой корреляции для голого ядра, лишенного электронных оболочек, онределяется исключительно свойствами ядерных уровней, между к-рыми происходят р- или у-переходы. Взаимодействие квадрупольного и магнитного моментов промежуточного ядра, образующегося после первого (Р- или у-) перехода, с молекулярными и кристаллич. электрическими и магнитными полями приводит (jnpn времени жизни промежуточного ядра 10 ч—10 1 сек) к искажению (возмущению) корреляции, свойственной голому ядру угловое распределение приближается к сферически симметричному. Поэтому вид возмущенных угловых корреляций может быть использован для получения количественной информации о внутримолекулярных полях, о структуре электронных оболочек атомов и молекул. Теория метода возмущенных угловых корреляций развита довольно подробно, но применение этого метода в химич. исследованиях лишь начинается и представляется одной из важных будущих задач Я. х. [c.536]

    В ряде работ были сделаны попытки найти корреляции между каталитической активностью и физико-химическими свойствами металлов и сплавов. Предполагается, что высокие каталитические свойства платино-рутениевых сплавов можно связать с их электронной структурой [247, 248]. Количественной характеристикой электронной структуры служит число неснаренных -электронов, приходящееся на атом катализатора. Согласно работе [247], число -электронов на атом для Р1 и Рс1 равно 0,6 для К11 — 1,4 для 1г — 1,7 и для Ип — 2,2. Для гомогенных сплавов предполагается линейная зависимость числа -электронов от состава сплава. Повышенная активность связывается с оптимальным числом неспаренных -электронов. Биндер и др. [234] сопоставляли актив- [c.319]


Смотреть страницы где упоминается термин Корреляции количественные структура—свойство: [c.259]    [c.53]    [c.7]    [c.370]    [c.6]    [c.535]    [c.7]    [c.247]   
Химические приложения топологии и теории графов (1987) -- [ c.206 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Корреляции количественные



© 2024 chem21.info Реклама на сайте