Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность при обратном осмосе и ультрафильтрации

    Баромембранные процессы (обратный осмос, ультрафильтрация, микрофильтрация) обусловлены градиентом давления по толщине мембран, в осн. полимерных, и используются для разделения р-ров и коллоидных систем при 5-30 °С. Первые два процесса принципиально отличаются от обычного фильтрования. Если при нем продукт откладывается в виде кристаллич. или аморфного осадка на пов-сти фильтра, то при обратном осмосе н ультрафильтрации образуются два р-ра, один нз к-рых обогащен растворенным в-вом. В этих процессах накопление данного в-ва у пов-сти мембраны недопустимо, т.к. приводит к снижению селективности и проницаемости мембраны (о различии между микрофильтрацией и фильтрованием см. ниже). [c.24]


    Обратный осмос и ультрафильтрация имеют принципиальное отличие от обычной фильтрации. Если при фильтрации продукт откладывается в виде кристаллического или аморфного осадка на поверхности фильтра, то при обратном осмосе и ультрафильтрации образуется два раствора, один из которых обогащен растворенным веществом. В этих процессах накопление растворенного вещества у поверхности мембраны недопустимо, так как приводит к резкому снижению селективности и проницаемости мембраны. [c.17]

    Как и всем мембранным методам, обратному осмосу и ультрафильтрации свойственно явление концентрационной поляризации, которое заключается в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса растворителя через мембрану. В результате происходит падение проницаемости и селективности, сокращается срок службы мембран. Для уменьшения вредного влияния концентрационной поляризации необходимо турбулизовать прилегающий к поверхности мембраны слой жидкости, чтобы ускорить перенос растворенного вещества в ядро разделяемого раствора. Этого добиваются применением в лабораторных установках магнитных мешалок и вибрационных устройств, а в промышленных условиях увеличением скорости протекания жидкости вдоль мембраны и использованием различного рода турбулизаторов. [c.18]

    Современные представления, лежащие в основе капиллярно-фильтрационной модели механизма полупроницаемости (см. стр. 203), позволяют сделать вывод о возможности получения пористых селективных мембран для обратного осмоса и ультрафильтрации практически из [c.47]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]


    Разделение методами обратного осмоса и ультрафильтрации принципиально отличается от обычного фильтрования. При обратном осмосе и ультрафильтрации образуются два раствора концентрированный и разбавленный, в то время как при фильтровании осадок откладывается на фильтровальной перегородке. В процессе обратного осмоса и ультрафильтрации накопление растворенного вещества у поверхности мембраны (вследствие концентрационной поляризации) недопустимо, так как при этом резко снижаются селективность (разделяющая способность) и проницаемость (удельная производительность) мембраны, сокращается срок ее службы. [c.519]

    Пористые мембраны нашли широкое применение прежде всего в процессах обратного осмоса, микро- и ультрафильтрации, реже-для разделения газов. Они имеют как анизотропную, так и изотропную структуру. Мембраны с анизотропной структурой имеют поверхностный тонкопористый слой толщиной 0,25-0,5 мкм (называемый активным, или селективным), представляющий собой селективный барьер. Компоненты смеси разделяются именно этим слоем, располагаемым со стороны разделяемой смеси. Крупнопористый слой толщиной примерно 100-200 мкм, находящийся под активным слоем, является подложкой, повышающей механическую прочность мембраны. Мембраны с анизотропной структурой характеризуются высокой удельной производительностью, более медленной закупоркой пор в процессе их эксплуатации. Срок службы этих мембран определяется главным образом химической стойкостью материала мембран в перерабатываемых средах. Для мембран с изотропной структурой характерно быстрое снижение проницаемости вследствие закупорки пор коллоидными или взвешенными частицами, часто содержащимися в разделяемых растворах. [c.315]

    Реагентная ультрафильтрация резко расширяет область применения мембранных методов разделения. Появилась возможность использования высокопроизводительных процессов для обезвреживания промышленных стоков, которые раньше можно было очистить только обратным осмосом. Этим методом можно селективно удалять из отходов загрязняющие компоненты, не затрагивая солевого балласта. Кроме того, облегчается утилизация и переработка извлеченных токсичных компонентов. [c.230]

    ДИАФИЛЬТРАЦИЯ, способ осуществления мембранных методов разделения р-ров (гл. обр. обратного осмоса и ультрафильтрации), используемый в тех случаях, когда проницаемость мембраны по отношению к разл. компонентам р-ра сильно различается. При Д. в мембранный аппарат с разделяемым р-ром дополнительно вводится р-ритель, расход к-рого обычно равен кол-ву отбираемого из аппарата филь-трата. Компонент р-ра, плохо задерживаемый мембраной, переходит вместе с вводимым р-рителем в фильтрат компонент, селективно задерживаемый мембраной, остается в аппарате, что позволяет практически нацело разделить компоненты р-ра. Д. примен., вапр., для очистки р-ров полимеров от минер, солей. Достоинства способа — высокая степень разделения, простота конструктивного оформления, низкие эксплуатац. расходы. [c.161]

    Еще более высокие показатели селективности и проницаемости имеют промышленные мембраны для обратного осмоса и ультрафильтрации, выпускаемые зарубежными фирмами. В частности, промышленные ультра-фильтрационные мембраны Дженерал электрик имеют показатель проницаемости 57 600 л/м ч [265]. [c.475]

    Эффективность процессов обратного осмоса и ультрафильтрации в значительной мере определяется свойствами применяемых мембран, которые должны отвечать следующим требованиям высокой разделяющей способностью (селективностью), высокой удельной проницаемостью, устойчивостью к действию среды, неизменностью [c.101]

    Основными характеристиками ультрафильтрации и обратного осмоса являются проницаемость и селективность мембран. Проницае.мость (или дельная производительность) выражается количеством фильтрата I , отнесенны.м к единице времени т и единице поверхности s мембраны  [c.287]

    Мембраны с узкими порами, используемые в обратном осмосе, имеют высокую селективность по ПАВ даже в том случае, когда оно находится в разделяемом растворе в молекулярном состоянии. Поэтому для очистки сточных вод с низким содержанием ПАВ (т. е. до критической концентрации мицеллообразования) можно рекомендовать мембраны именно для обратного осмоса, а не для ультрафильтрации. [c.106]

    Растворенные вещества, подлежащие разделению или концентрированию обратным осмосом или ультрафильтрацией, обычно имеют заряд (растворы электролитов, многих белков и т. п.). Часто несут заряд и мембраны, используемые для этих процессов. Например, ацетатцеллюлозные мембраны имеют небольшой отрицательный заряд. Поэтому можно предположить, что изменение pH может влиять на технологические характеристики мембраны и прежде всего на селективность. Кроме того, pH влияет и на толщину граничных слоев жидкости, что в значительной мере определяет селективные свойства мембран. [c.107]

    Предполагается, что разделение происходит при постоянных давлении и температуре. Постоянство температуры во всех случаях является вполне оправданным допущением как правило, обратный осмос и ультрафильтрацию проводят при температуре окружающей среды, и изменение температуры может быть связано с теплотой концентрирования, что на практике не превышает долей градуса. В некоторых случаях возможно проведение процесса при повышенных температурах (до 40—50°С) с целью снижения вязкости раствора, повышения удельной проницаемости и селективности мембран. При этом изменение температуры, связанное с тепловыми потерями аппарата, может достигнуть нескольких градусов. Однако и такое изменение мало влияет на удельную производительность и селективность мембраны. [c.168]


    Ультрафильтрация — процесс разделения высокомолекулярных и низкомолекулярных соединений в жидкой фазе с использованием селективных мембран, пропускающих преимущественно или только молекулы низкомолекулярных соединений. Движущей силой ультрафильтрации является разность давлений (рабочего и атмосферного) по обе стороны мембраны. Обычно ультрафильтрацию проводят при сравнительно невысоких давлениях 0,3—1 МН/м (3— 10 кгс/см2). Обратный осмос и ультрафильтрация имеют много общего. Для их осуществления, например, используются полупроницаемые мембраны, приготовленные из одного и того же материала, но имеющие различные размеры пор. Аппараты для этих процессов аналогичны. Однако необходимо отметить, что механизм процессов обратного осмоса и ультрафильтрации различен (см. стр. 83). [c.12]

    Современные представления о капиллярно-фильтрационной модели механизма полупроницаемости (см. стр. 87) позволяют сделать вывод о возможности получения пористых селективных мембран для обратного осмоса и ультрафильтрации на основе практически любого лиофильного материала. Наибольшее практическое распространение получили синтетические полимерные мембраны, приготовленные по специальной технологии. [c.30]

    Одной из важных задач при осуществлении процесса обратного осмоса и ультрафильтрации является выбор мембран, которые должны обладать высокой проницаемостью и селективностью, устойчивостью к действию разделяемых растворов, достаточной механической прочностью, неизменностью характеристик в процессе эксплуатации и хранения, низкой стоимостью. Наиболее пригодны мембраны ацетатцеллюлозного типа, обработанные для водопроницаемости перхлоратом магния. Эти мембраны с порами 0,3—0,5 нм характеризуются большой скоростью пропускания воды, хорошо отделяют соли и другие вещества, имеют высокую степень набухания. [c.151]

    Применение. Ацетатные нити используют прн изготовлении бельевого трикотажа, тканей для подкладки и штор, изделий детского ассортимента, косынок и др., триаце-татные-при изготовлении тканей для платьев, галстуков, купальных костюмов, термообработанные триацетатные-в пронз-ве плиссированных н тисненых изделий. Из текстури-рованных нитей изготовляют трикотажные изделия. Жгутовое А. в. применяют в пронз-ве сигаретных фильтров, задерживающих 30-50% никотина, до 80% фенола н пирокатехина, 30-40% 3,4-бензпирена (на изготовление жгута расходуется ок. 20% мирового выпуска ацетатов целлюлозы). Полое волокно с селективно проницаемыми стенками используют в спец. аппаратах для мембранного разделения р-ров и коллоидных систем методами обратного осмоса, ультрафильтрации, диализа. Мировое произ-во А. в. 609 тыс. т/год (1983), из них текстильного назначения 275 тыс. т/год, остальное-жгутовое А. а [c.226]

    Обратным осмосом и ультрафильтрацией, как отмечалось выше (стр. 180), можно разделять не только растворы электролитов, но также и смеси органических веш,еств. Примеры подобного разделения приведены на стр. 279— 284. Разделение растворов органических веществ обратным осмосом, влияние на продесс внешних факторов [(рис. IV-7), (IV-11) —(IV-13) и др.] могут быть объяснены с позиций капиллярнофильтрационной модели механизма селективной проницаемости. [c.217]

    Метод расчета эмпирических корреляций по влиянию концентрации растворенных веществ и гидродинамических условий нашел развитие в работах Ю. И. Дытнерского и Р. Г. Кочарова и базируется на экспериментально изученных зависимостях селективности и проницаемости от концентрации растворенных веществ и гидродинамических условий в аппаратах обратного осмоса и ультрафильтрации [186—188]. Во всех случаях предполагается, что процесс проводится при постоянном давлении и постоянной температуре. [c.230]

    Однако обратный осмос и ультрафильтрация отличаются от фильтрования с образованием осадка или закупориванием пор перегородки и получением чистого фильтрата. При обратном осмосе и ультрафильтрации осуществляется разделение раствора на растворитель и раствор с повышенной концентрацией растворенного вещества. При этом накопление растворенного вещества у поверхности мембраны недопустимо, так как оно приводит к резкому снижению проницаемости и селективности действия мембраны (концентрационцая поляризация). Для устранения этого необходимо постоянно обновлять слой жидкости у поверхности мембраны. Таким образом обратный осмос и ультрафильтрация в некотором смысле аналогичны фильтрованию с непрерывным удалением слоя осадка с поверхности перегородки и получением чистого фильтрата и сгущенной суспензии. Однако следует отметить, что при ультрафильтрации может образоваться гелевидный слой на поверхности мембраны, снижающий производительность установки. [c.83]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содержащихся в стоках коллоидных или полимерных частиц и при этом обеспечивает необходимую степень опреснения. На основе динамических мембран одновременно решаются две задачи —достигается очистка от дисперсных (или полимерных) частиц и опреснение, одновременно протекают два процесса — ультрафильтрация и обратный осмос. [c.386]

    ГИПЕР- И УЛЬТРАФИЛЬТРАЦИОННЫЕ МЕМБРАНЫ, применяют для разделения р-ров методом обратного осмоса или ультрафильтрации. Наиб, распространены полимерные мембраны в виде пленок, полых нитей и тонких покрытий, нанесенных на подложки, имеющие форму листов или полых цилиндров. Гиперфильтрац. пленочные мембраны имеют асимметричную структуру, причем плотный (активный) слой, занимающий 0,1—0,3% ее толщины, обращен к разделяемой системе и обеспечивает задерживание растворенных в-в (напр., Nad) проницаемость 0,05—0,1 м / (м -сут-МПа) при селективности до 99%. Плотность упаковки в разделит, аппарате до 1000 м /м . Полые нити имеют внеш. диаметр 40—200 мкм, толщину стенки ок. 25% от него проницаемость 0,02—0,06 м /(м <суТ МПа) [c.135]

    Данный метод базируется на сочетании уравнений материального баланса с уравнениями, характеризующими зависимость селективности и удельной производителйности от концентрации растворенных веществ и гидродинамических условий в аппаратах обратного осмоса [93, 94, 96]. В частных случаях (невысокие концентрации растворенных веществ, отсутствие гелеобразования) метод может быть применен к процессу ультрафильтрации. [c.168]

    Основными факторами, оказывающими в.чияние на скорость и селективность процесса обратного осмоса и ультрафильтрации, являются рабочее давление, гидродинамические условия в аппарате, природа и концентрация разделяемого раствора, температура. При использовании уплотняющихся мембран имеет значение также продолжительность их работы. [c.68]

    Диафилътрация — это способ проведения мембранных методов разделения (ультрафильтрации, обратного осмоса и некоторых других), который может использоваться в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель в количестве, равном количеству отбираемого фильтрата. Тот из компонентов, который плохо задерживается мембраной (НС), переходит вместе с растворителем в фильтрат, а компонент, по отношению к которому мембрана высокоселективна (ВС), остается в аппарате. [c.111]

    Нанофильтрация занимает промежуточное положение между ультрафильтрацией и обратным осмосом и характеризуется малой задерживающей способностью (селективностью) по солям с одновалентными анионами и органическими соединениями и высокой - по солям с двух- и поливалентными анионами и органическими соединениями. Широкое применение нанофильтрация находит в питьевом водоснабжении для умягчения и частичного обессоливания жестких и солоноватых вод. [c.563]

    Установлено, что полимерные пленки, выпускаемые промышленностью для ультрафильтрации, ионного обмена [158, 169, 170], а также мембраны из коллодия, желатины, целлюлозы и других материалов [171, 1721 не пригодны для обратного осмоса. Полупроницаемые мембраны, полученные Рейде и Спенсером 11731, имеют хорошую селективность, но малую проницаемость (0,4 л/м ч при давлении 40 ат). Мембраны, приготовляемые по специальной прописи из смеси ацетатцеллюлозы, ацетона, воды, перхлората магния и соляной кислоты (соответственно 22,2 66,7 10,0 1,1 и 0,1 весовых процента), позволяют опреснять воду с 5,25 до 0,05% Na l и имеют проницаемость 8,5—18,7 л м ч при рабочем давлении 100—140 ат [158, 1741, срок их службы не менее 6 месяцев [1751. Электронно-микроскопические исследования этих мембран [176—1781 показали, что их активная часть — плотный поверхностный слой толщиной 0,25 мк с очень мелкими порами, которые не представилось возможности обнаружить. Он соединен с губчатой крупнопористой структурой (поры 0,1 мк) толщиной 250 мк, обеспечивающей механическую прочность мембраны и являющейся подложкой селективного поверхностного слоя. Изыскания способов приготовления мембран продолжаются [159, 160, 179—191], так как, по предварительным расчетам 11921, обратный осмос может стать конкурентноспособным с другими способами опреснения воды при повышении проницаемости мембран до 5 м 1м в сутки. [c.415]

    Выше уже отмечалось, что концентрационная поляризация приводит к загрязнению мембран. Но этим далеко не исчерпывается ее отрицательная роль в мембранных процессах. Именно она определяет сопротивление массообмену со стороны разделяемого раствора. Из-за повышения концентрации у поверхности снижаются селективность и удельная производительность мембран. Причем поскольку отношение концентраций растворенных веществ у поверхности мембраны и в объеме разделяемого раствора экспоненциально возрастает с увеличением удельной производительности, то концентрационная поляризация может явиться фактором, лимитирующим проницаемость мембран в процессах ультрафильтрации, нанофильтрации и обратного осмоса. И усилия, направленные на создание новых высокопроизводительных мембран, могут оказаться напрасными, если одновременно не развивать способы ее эффективного снижения. [c.344]

    Другим важным классом мембранных полимеров являются полиамиды. Для этих полимеров характерно наличие амидной группы (— O--NH—). Хотя алифатические полиамиды охватывают очень широкий класс полимеров, ароматические полиамиды имеют преимущества в качестве мембранных материалов из-за высокой механической, химической, термической и гидролитической устойчивости, а также их свойств по проницаемости и селективности, особенно в процессах обратного осмоса. Однако алифатические полиамиды также проявляют хорошую химическую стабильность и могут быть использованы для микрофильтрации и ультрафильтрации. [c.73]

    Промежуточное положение между ультрафильтрацией и обратным осмосом занимает нанофильтрация, характеризующаяся малой селективностью по солям с одновалентными анионами и органическим соединениям с молекулярной массой менее 150 и высокой селективностью по солям с ди- и поливалентными анионами и органическим соединениям с молекулярной массой более 300. Нанофильтрационные мембраны позволяют отделять соли с многовалентными анионами от органических соединений с молекулярной массой 300—1000. Нанофильтрация применяется, если необходимо удалить одну из солей, по которой селективность нанофильтрации высокая [35, 36]. [c.122]


Смотреть страницы где упоминается термин Селективность при обратном осмосе и ультрафильтрации: [c.8]    [c.344]    [c.135]    [c.122]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмос

Осмос обратный

Ультрафильтрация



© 2024 chem21.info Реклама на сайте