Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана динамическая

    Осмометры можно подразделить по принципу измерения осмотического давления и по диапазону измеряемого давления, от которого существенно зависит конструкция прибора. Измерение осмотического давления статическими методами проводится после наступления равновесия в системе раствор — мембрана — растворитель. В простейшем случае осмотическое давление измеряется по высоте столба жидкости. Недостатком статического метода является сложность определения момента наступления равновесия и значительные затраты времени. Для быстрых и точных измерений служит динамический метод. Идея этого метода заключается в измерении объемной скорости проницания через мембрану растворителя при различном давлении в ячейке (рис. 1-8). Интерполяцией данных в области прямого и обратного осмоса получаем значение осмотического давления. [c.38]


    Широкое распространение для определения молекулярной массы ВМС с помощью осмометрических измерений получил осмометр Хел-фрица (рис. 1-12). Он позволяет производить измерения как динамическим, так и статическим методами [42]. В последней модификации этого прибора исключен возможный прогиб мембраны. [c.40]

    Большой интерес для очистки сточных вод, растворенные вещества которых могут легко переходить в коллоидную форму, представляют динамические мембраны. К этому типу сточных вод относятся, в частности, промывные воды гальванических производств. Эти воды отличаются высокой токсичностью и перед сбрасыванием в водоемы подвергаются глубокой очистке. В настоящее время наиболее распространены химические методы очистки, характеризующиеся высокой стоимостью и большим расходом химических реагентов. Так, очистка хромсодержащих сточных вод включает стадии восстановления шестивалентного хро ма до трехвалентного сульфатом натрия или серной кислотой, нейтрализации полученного раствора едким натром илп гидратом окиси кальция, отделения полученного осадка Сг(ОН)з в отстойниках. Причем на 1 кг СгОз расходуется около 5 кг кислот и щелочей. Указанные методы имеют и ряд других недостатков. Так, осадок, полученный в отстойниках, содержит много влаги и подвергается обезвоживанию на вакуум-фильтрах. Высушенный осадок, как правило, не перерабатывается и вывозится на захоронение. [c.317]

    В процессе разделения растворов с помощью полупроницаемых мембран через мембрану преимущественно проходит растворитель. При этом концентрация растворенного вещества в пограничном слое у поверхности мембраны увеличивается. Повышение концентрации происходит до тех пор, пока под действием возникающего градиента концентраций растворенного вещества между поверхностью мембраны и объемом раствора не установится динамическое равновесие. [c.170]

    Точность динамической балансировки рабочих колес и роторов центробежных насосов можно повысить при помощи устройства, показанного на рис. 2.63. На входе и выходе рабочего колеса 2 установлены заглушки 1, выполненные из прозрачного материала. В канале 5, сообщенном с плотностью рабочего колеса 2, установлена эластичная мембрана 4, отделяющая полости ротора 3 и колеса 2 от атмосферы. Порядок повышения точности балансировки следующий измеряют дисбаланс рабочего колеса 2 и ротора 3, на входе и выходе рабочего колеса 2 устанавливают заглушки 1, устраняют вносимый ими дисбаланс, заполняют рабочее колесо 2 рабочей жидкостью, измеряют дисбаланс заполненного рабочего колеса 2 и ротора 3 и устраняют дисбаланс [17]. [c.95]


    Сравнительные характеристики динамических и полимерных мембран. Среди синтетических мембран для обратного осмоса наибольшее распространение, как отмечалось ранее, получили ацетатцеллюлозные, важным достоинством которых является высокая селективность. Следует ожидать, что они сохранят свое значение и при широком развитии динамических мембран, и лишь технико-экономические расчеты в каждом конкретном случае позволят выбрать тот или иной тип мембраны. [c.90]

    Другим важнейшим достоинством динамических мембран является высокая проницаемость, достигающая сотен литров с квадратного метра в час, что значительно больше проницаемости широко распространенных ацетатцеллюлозных мембран. Следует также отметить, что срок службы динамических мембран практически неограничен. Мембрана обладает полупроницаемыми свойствами все время, пока в разделяемом растворе имеются примеси дисперсного материала. В случае небольшого механического повреждения возможно самовосстановление [c.84]

    На этом осмометре с ис пользова нием ацетатцеллюлозных мембран серии МГА-95 производства ВНИИСС были проведены измерения осмотического давления динамическим и статическим методами. Во всех случаях мембраны располагались активным слоем к раствору. При динамическом методе в камере с раствором создавали давление, большее или меньшее осмотического, и по скорости потока растворителя через [c.41]

    Концентрация добавки, которая требуется для образования динамической мембраны, зависит от природы добавки, типа раствора и условий проведения процесса разделения и в большинстве случаев не превышает 0,1—10 мг/л. Для мембран на основе гидроокисей поливалентных металлов эта величина несколько больше. Влияние концентрации добавки на характеристики разделения динамических мембран на основе гидроокиси железа иллюстрируется рис. П-18, б. [c.88]

    Наряду с полимерными известны многие типы мембран с жесткой структурой. В их числе металлические мембраны, мембраны из пористого стекла, нанесенные, динамические и многие другие мембраны. [c.73]

    Исследования проводились на предварительно умягченной природной воде. Динамические мембраны были образованы с помощью дисперсных добавок гидроокиси циркония и полиакриловой кислоты. При рабочем давлении около 7 МН/м (70 кгс/см ) и скорости потока в трубках 5 м/с наблюдалась селективность по иону ЗО " до 99% и по иону С1 до 91%. Производительность по очищенной воде достигала 15 м /сут и мало снижалась со временем. [c.85]

    Как известно, интервал pH, в котором ацетатцеллюлозные мембраны могут использоваться, ограничен 3<рН<8. Поэтому при обработке агрессивных растворов конкуренцию динамическим мембранам могут составить только новые типы синтетических мембран. В среднем проницаемость динамических мембран оказывается выше, чем у лучших образцов полимерных мембран. Это объясняется тем, что адсорбция добавок происходит только на поверхности пористой структуры со стороны прикладываемого давления, подтверждением чему являются исследования срезов подложки под электронным микроскопом. Толшина адсорбционного слоя по исходному веществу при этом. мала. Так, для [c.91]

    Процесс образования динамических мембран. Полупроницаемый слой, формирующийся на поверхности пористой подложки в результате сорбции диспергированных частиц, в большинстве случаев находится в динамическом равновесии с раствором. Время достижения равновесия зависит от условий эксперимента и обычно составляет несколько часов. Рис. П-18, а иллюстрирует процесс образования динамических мембран и их разрушение после удаления из раствора коллоидных частиц. Как видно из рисунка, образование мембраны выражается в повышении селективности и снижении проницаемости. Затем наступает равновесие селективность и проницаемость не изменяются. Если прекратить добавление в раствор дисперсных частиц, селективность в течение нескольких часов падает до нуля, а проницаемость возрастает. [c.86]

    Ацетатцеллюлозные мембраны не пригодны для этой задачи, так как задерживают примерно в равной степени катионы и анионы. Используя же дисперсные добавки, образующие на пористых подложках положительно или отрицательно заряженный слой, можно добиться соответственно отделения только катионов или анионов. Причем, если ионы многовалентные, то динамические мембраны по селективности почти не уступают ацетатцеллюлозным (табл. И,11). [c.90]

    Влияние pH. Характеристики динамических мембран в значительной степени зависят от pH обрабатываемых растворов. При изменении pH меняется ионообменная способность заряженных мембран, что отражается на степени задержания различных ионов. Например, мембраны, образованные полиакриловой кислотой, в щелочной среде обладают значительно большей селективностью по Na l и Na2S04, чем по Mg b, поскольку Mg2+ является многовалентным противоионом [98]. В кислой среде мембрана переходит в нейтральную форму и наблюдается противоположная картина. Влияние pH является существенным и по той причине, что большинство мембранообразующих добавок представляет собой коллоидные системы, а в зависимости от pH может наблюдаться изменение размера коллоидных частиц, их растворение или коагуляция. [c.89]

    Исходя из равенства электрохимических потенциалов данного иона в объеме раствора и в порах динамической мембраны и из условия электронейтральности в/нутри пор, можно получить следующее выражение  [c.216]

    Ломающиеся мембраны (рис. 25.3, в) изготовляются из хрупкого материала (чугун, эбонит, поливинилхлорид и др.). У них невелика разница в величине разрушающего давления прн статических и динамических нагрузках, поэтому они хорошо работают в условиях динамических, пульсирующих и знакопеременных нагрузок. [c.306]


    Основные положения теории ионоселективных электродов. Независимо от типа мембраны поведение ионоселективных электродов подчинено одним и тем же общим закономерностям, так как во всех случаях, несмотря на различие механизмов, происходит перенос ионов через границу раздела фаз и внутри мембраны. Если мембрана помещена между двумя растворами, то через нее возможно перемещение ионов только определенного типа в направлении к раствору с меньшей активностью (концентрацией) этих ионов. На поверхности мембраны возникает потенциал, препятствующий дальнейшему перемещению ионов, и в конечном счете устанавливается динамическое равновесие. [c.41]

    ДИНАМИЧЕСКИЕ МАКРОСТРУКТУРЫ 1. Мембраны [c.386]

    Мембрана находится в динамическом, лабильном состоянии, химические реакции и приток энергии исключают для нее равновесное состояние. Это обстоятельство делает маловероятной простую бислойную модель, по-существу статичную , говорит в пользу мозаичной модели. Вместе с тем очевидно, что необходимый уровень неравновесности у этой модели достигается относительно небольшими структурными нарушениями в бислойной модели без коренной ломки структуры. [c.387]

    ХУШ.б. ОБРАТНЫЙ ОСМОС И ДИНАМИЧЕСКИЕ МЕМБРАНЫ [c.383]

    Разрывные мембраны изготовляют из тонколистовых материалов, назначаемых с учетом свойств и температуры рабочих сред (см. табл). После установки разрывной мембраны в держателях ей придают сферическую форму, нагружая давлением выпучивания р . Предварительное выпучивание способствует уменьшению разницы между разрушающими давлениями при статическом и динамическом нагружениях. Исследования показывают чем меньше разность (р - р , тем выше скорость срабатывания мембран, поэтому для формообразования разрывных мембран желательно применять максимальные значения р . Однако в условиях пульсирующего давления с увеличением р уменьшается число циклов нагружения, которое может выдержать мембрана. [c.421]

    Экспериментально установлено [13], что текучесть мембран из пластичных неталлов может быть значительно уменьшена при предварительной формовании или после него путей динамического воа-действия давлением, равным примерно 90% от разрывного давления для данной мембраны. Динамическая нагрузка должна быть приложена за очень короткое время (импульс), так как при большем времени воздействия такой нагрузки мембрана может изменить форму и даже разорваться. Время приложения динамической нагрузки зависит от свойств металла, из которого изготовлена мембрана. При одном и том же времени воздействия динамической нагрузки меибрана из серебра, напринер, имеет большую текучесть и склонность к изменению формы под воздействием давления, чем мембрана из никеля. Установлено, что, чем больше динамическое давление приближается к разрывному, тем прочнее становится мембрана и менее подвержена текучести в рабочих условиях. Практически отношение динамического давления к разрывному составляет 90-97%. [c.107]

    Время отклика электродов с жидкой мембраной на основе нейтральных переносчиков связано с процессами ионного транспорта в теле мембраны. Динамические характеристики этого типа электродов, измеренные в тех же гидродинамических условиях, в которых измерялись времена отклика твердофазных электродов, как было найдено [237], значительно хуже. Однако, изменяя состав жидкой мембраны, можно существенно уменьшить время установления равновесного потенциала, что позволит с успехом использовать и эти электроды для целей определения микроколичеств элементов в условиях проточно-инжекционного анализа. Чувствительность определения в потоке с применением потенциометрических детекторов, очевидно, связана с динамическими характеристиками электродов и поэтому растет с увеличением времени пребывания анализируемого раствора в электрохимической ячейке чувствительность можно повысить путем увеличения объема ячейки и уменьшения скорости потока. Оптимизируя режим работы проточно-инжекционной системы, удается избежать трудностей, связанных с дрейфом потенциала и его гистерезисом, а также повысить чувствительность анализа и воспроизводимость определения даже в субнернстовской области концентраций (т. е. в области низких концентраций определяемого иона, где угол наклона функциональной зависимости потенциала индикаторного электрода от концентрации потенциалопределяющего иона меньше теоретического или зависимость носит нелинейный характер) [238] [c.166]

    Как видно из рис. 1.9, капиллярно-осмотическое торможение приводит к тому, что продолжение линейных участков зависимостей v AP) не проходит через нача.по координат и отсекает на оси давления отрезок, численно равный так. называемому динамическому осмотическому давлению Ал. Для полупроницаемых мембран, когда в порах находится только растворитель (С = 0), Ап = Апо = ЯТАС. В случае обратноосмотических мембран, в поры которых растворенное вещество проникает (СфО), Ал = аАпо. В первом приближении а=ф <1, где ф=1— — (С//Со) — коэффициент селективности мембраны. Давление Ап является динамическим в том смысле, что оно возникает только при течении раствора. В отсутствие течения, разность концентраций снимается диффузией растворенного вещества через поры мембраны. [c.26]

    Осмометры с вертикальной мембраной наиболее широко применяют для измерения осмотических давлений растворов средних концентраций. На рис. 1-11 изображен осмометр Фуосса — Мида [41]. Он позволяет определять осмотическое давление как динамическим, так и статическим методами. Достоинством этого осмометра является быстрое время наступления равновесия, однако он отличается некоторой сложностью конструкции. Осмометры подобного типа были разработаны Хелфрицем [42], Жуковым и др. [42—44]. Ячейки с целью уменьшения объема изготовляются в виде фланцев с каналами. Мембрана одновременно служит прокладкой. Капилляр 3 сравнения служит для оценки высоты поднятия жидкости под действием капиллярных сил. Модифи- [c.39]

    Динамические мембраны образуются при фильтровании раствора, содержащего примеси диспергирован 10го вещества, через пористые подложки [94—109]. Подложки, имея поминальный размер пор от 3 нм (30 А) до 5 мкм, сами по себе не способны задерживать молекулы и ионы растворенных низкомолекулярных веществ [94]. Однако в результате сорбции дисперсных часпщ на поверхности подложки, обращенной к раствору, образуется полупроницаемый слой. [c.83]

    Особенно большой интерес представляет обработка таких растворов, один или несколько компонентов которых сами способны осаждаться на подложках, образуя динамические мембраны. Подобное явление, называемое самозадержанием, часто встречается при фильтрации через пористые подложки сточных вод, а также загрязненных природных вод. Так, при пропускании через пористые керамические трубки бытовых сточных вод и воды из загрязненного озера химическое потребление кислорода (ХПК) в очищенной воде снижалось на 80— 90%, а бактерии задерживались практически полностью [99]. Предло- [c.85]

    Установлено [101], что динамические мембраны с хорошими характеристиками получаются при обработке отходящих щелоков целлюлозно-бумажных производств. Изучалась возможность получения самоза-держивающих мембран при работе на сточных водах химических и целлюлозно-бумажных производств [102]. В качестве пористой основы использовались графитовые трубки наружным диаметром 8—12 мм и толщиной стенки 2 мм, применяемые в промышленности в качестве оболочек для электродов. Полученные результаты представлены в табл. [c.86]

    Из этих таблиц видно, что динамические мембраны, полученные в результате самозадержания, могут обладать вполне удовлетворительными характеристиками. Причем не вызывает сомнения, что эти характеристики могут быть существенно лучше, если в качестве пористой основы использовать специально приготовленные подложки с более равномерным распределением пор по размеру. Весьма примечательно, что самозадерживающие динамические мембраны, хотя и с невысокой селективностью, образовались при работе на концентрированной серной кислоте, содержащей примеси арилсульфокислот. [c.86]

    Однако имеется ряд задач, где пренмуш,ество использования динамических мембран не вызывает сомнения. Прежде всего это относится к процессам, где не требуется проводить глубокое обессоливание. Например, применение динамических мембран для обработки воды из загрязненных рек и водоемов позволит полностью очистить воду от бактерий, вирусов, взвесей, снизить содержание растворенных веществ в несколько раз, что во многих случаях сделает воду пригодной для технического и бытового использования. Несомненным преимуществом динамические мембраны будут обладать и тогда, когда необходимо очистить раствор от ионов одного знака. [c.90]

    Интересно отметить, что довольно близкие величины селективности по каждому иону наблюдаются независимо от вида мембранообразующей гидроокиси и наличия в растворе других ионов. Это позволяет предположить, что динамические мембраны могут использоваться для очистки как индивидуальных, так и смешанных сточных вод гальванических производств. [c.317]

    Поскольку растворы щестивалентного хрома не способны образовать динамическую мембрану, на первом этапе были проведены эксперименты на смешанных растворах, содержащих МагСггО и СгС1з. Для получения коллоидных частиц Сг(ОН)з в раствор добавляли 0,1 М раствор ЫаОН до pH 4. Анализ зависимости селективности (по общему хрому) и проницаемости от соотношения концентраций шести- и трех-валентного хрома в исходном растворе показал (рис. У1-20), что с возрастанием этого соотношения селективность остается примерно постоянной до величины = 2,5, после чего снижается. Таким образом, для образования динамической мембраны нет необходимости [c.318]

    В работе [Зб]отмечено, что разделение углеводородов достигается селективным проникновением через динамические жидкие мембраны, образованные растворами ПАВ на поверхности купель. Правильно подобранные ПАВ или смесь различных веществ позволяет повысить селективность разделения. Основными достоинствами динамических мембран являются высокая проницаемость и селективность по отношению к компонентам сырья, возможность образования их за счет микропримесей, находящихся в растворе. [c.54]

    Все эти требования трудносовместимы. Существует около 50 конструкций осмометров, из которых даже наилучшие, например осмометр Фуосса и Мида (1943 г.), не лишены недостатков. Разработано также множество рецептов для приготовления полупроницаемых мембран в последнее время их изготавливают в основном из синтетических полимеров. Особыми, весьма сложными методами удается изготавливать мембраны, с помощью которых можно определять молекулярные массы до 2000, однако обычно считается, что мембранами можно разделить (не пропускать) молекулы с массой более 30 ООО. Кроме методов, основанных на измерении равновесного уровня жидкости в осмометре, используются и остроумные динамические методы, в которых осмотическое давление рассчитывается из скорости проникновения растворителя в осмотическую ячейку. Это значительно сокращает время измерений. [c.44]

    Широкое применение полимерных мембран для опреснения сточных вод сдерживается их низкой водопроницаемостью, нестойкостью в щелочных и кислых средах, недостаточной механической прочностью, постепенной и необратимой потерей ионной селективности в процессе эксплуатации. Поскольку мембранное опреснение определяется коллоидно-химическими свойствами, целесообразно разрабатывать методы получения мембран, образованных из дисперсных частиц (динамические мембраны). Для этого достаточно формировать осадки из сильнозаряженных малых коллоидных частиц так, чтобы размер пор при достаточно плотной упаковке не превыщал несколько единиц нм. Осадок (коллоидная мембрана) формируется при фильтрации жидкости, содержащей подобные частицы, через пористую подложку. Если размер пор достаточно мал, осадок формируется только на внещней поверхности подложки. Однако тонкопористая мембрана, как показывают многочисленные эксперименты, возникает (но значительно медленнее) и при диаметре пор порядка микрона, что почти стократно превыщает размер частиц, за счет многослойного прилипания частиц на стенки поры. [c.350]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содер- [c.350]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содержащихся в стоках коллоидных или полимерных частиц и при этом обеспечивает необходимую степень опреснения. На основе динамических мембран одновременно решаются две задачи —достигается очистка от дисперсных (или полимерных) частиц и опреснение, одновременно протекают два процесса — ультрафильтрация и обратный осмос. [c.386]


Смотреть страницы где упоминается термин Мембрана динамическая: [c.83]    [c.90]    [c.30]    [c.282]    [c.214]    [c.347]    [c.5]    [c.386]    [c.31]   
Курс коллоидной химии 1984 (1984) -- [ c.347 ]

Курс коллоидной химии 1995 (1995) -- [ c.383 ]

Курс коллоидной химии (1984) -- [ c.347 ]




ПОИСК





Смотрите так же термины и статьи:

Динамически образованные мембраны

Динамических мембран образовани

ЖИДКИЕ И ДИНАМИЧЕСКИ ОБРАЗОВАННЫЕ МЕМБРАНЫ

Мембрана для обратного осмоса динамические

Осажденные мембраны g Динамические мембраны

Проницаемость мембран динамических

Разделение мембранное динамическими мембранами

Сравнительные характеристики динамических и- уплотняющихся (полимерных) мембран

Физико-химические и динамические свойства и функции липидов мембран



© 2025 chem21.info Реклама на сайте