Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирусы капсид

Рис. 11.1. Строение вируса животных. Геном вируса обычно представлен относительно небольшой молекулой нуклеиновой кислоты (одно- или двухцепочечной ДНК или РНК длиной от 3 до 200 т. п. н.), заключенной в белковый капсид. У некоторых вирусов капсид окружен еще и белковой оболочкой. Рис. 11.1. <a href="/info/889759">Строение вируса</a> животных. <a href="/info/32761">Геном вируса</a> обычно представлен относительно небольшой <a href="/info/1382080">молекулой нуклеиновой кислоты</a> (одно- или двухцепочечной ДНК или РНК длиной от 3 до 200 т. п. н.), заключенной в белковый капсид. У <a href="/info/1435353">некоторых вирусов</a> капсид окружен еще и белковой оболочкой.

Рис. 21.9. Вектор на основе HSV-ампликон-плазмиды. Точка инициации репликации HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-ампликон-плазмида). Проводят трансфекцию клетки-хозяина, инфицированной вирусом-помощником HSV, полученной плазмидой. ДНК ампли-кон-плазмиды реплицируется по типу катящегося кольца . 10 амп-ликонов, соответствующих полноразмерному геному HSV, упаковываются в HSV-капсид, который поставляет вирус-помощник HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при лизисе клетки и используются для трансдукции нейронов. Рис. 21.9. Вектор на основе HSV-<a href="/info/1403409">ампликон</a>-плазмиды. <a href="/info/200587">Точка инициации репликации</a> HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-<a href="/info/1403409">ампликон</a>-плазмида). Проводят <a href="/info/1324393">трансфекцию клетки</a>-хозяина, <a href="/info/1310401">инфицированной вирусом</a>-помощником HSV, <a href="/info/1396459">полученной плазмидой</a>. ДНК ампли-кон-<a href="/info/1403734">плазмиды реплицируется</a> по типу катящегося кольца . 10 амп-<a href="/info/740041">ликонов</a>, соответствующих полноразмерному геному HSV, упаковываются в HSV-капсид, который поставляет <a href="/info/1310546">вирус-помощник</a> HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при <a href="/info/98011">лизисе клетки</a> и используются для трансдукции нейронов.
    Вирусы — это инфекционные частицы, которые состоят из молекул ДНК или РНК они образуют геном вируса), упакованных в белковый капсид у некоторых вирусов капсид окружен еще и мембранной оболочкой, основу которой составляет липидный бислой. Строение вирусного генома и способы его репликации у разных вирусов сильно варьируют. Вирус способен размножаться только в клетке-хозяине, используя для этого ее генетические механизмы. Обычно вирусная инфекция завершается лизисом инфицированной клетки и высвобождением потомства вируса. Однако некоторые вирусы могут включаться в хромосому клетки, не вызывая лизиса последней. Здесь вирусные гены (в форме провируса) реплицируются вместе с генами хозяина. Считается, что многие вирусы [c.325]

    ВИЧ принадлежит к числу так называемых ретровирусов, т. е. вирусов, в геноме которых закодированы зависимые транскриптазы (обратные транскриптазы). В результате репликация генома РНК-содер-жащих вирусов катализируется собственной обратной транскриптазой, которая упаковывается в белковую оболочку вируса — капсиду при каждой репликации вирусов в клетке-хозяине. Но в отличие от других ретро-вирусов (вирус саркомы кур Рауса, вирус полиомиелита) ВИЧ в своем геноме содержит пять дополнительных открытых участков, которые кодируют белки, оказывающие активирующее или подавляющее действие на белковый синтез и, возможно, на другие функции. Летальный эффект ВИЧ вызван тем, что, убивая специализированные Т-лимфоциты, он повреждает иммунную систему, поскольку без этих клеток В-лимфоциты не способны размножаться в ответ на проникновение в организм нового антигена. Молекулярный механизм летального действия ВИЧ таков при инфицировании клеток ВИЧ его капсидный белок связывается с трансмембранным клеточным белком, после чего вирусный капсид сливается с мембраной клетки, а вслед за этим вирусная РНК освобождается в клетку, где она после конверсии в двухцепочечную ДНК включается в хромосому в качестве провируса. Белок, синтезируемый под генетическим контролем провируса, позволяет инфицированным Т-лимфоцитам сливаться с неинфицированными Т-лимфоцитами, что ведет к их разрушению. Следовательно, человек погибает от потери способности организма к иммунологической защите от тех инфекций, которые сами по себе не являются смертельными. [c.491]


    Вирусы (по латыни вирус означает яд , отрава ) являются возбудителями болезней растений и животных. С биологической точки зрения вирусы - это внутриклеточные паразиты [4], которые могут размножаться только внутри клетки-хозяина. Вирусы, инфицирующие бактерии, называются бактериофагами. Вирус представляет собой шарообразную или палочкообразную полую частицу, образованную одним или несколькими сортами белка, диаметром в несколько сот ангстрем, внутри которой заключена нуклеиновая кислота (ДНК или РНК, одноцепочечная или двухцепочечная), длиной до сотен микрометров. Белковая оболочка вируса, называемая капсидом, у некоторых вирусов животных может быть заключена во внешнюю мембранную оболочку, состоящую из двойного липидного слоя. [c.91]

    Наш обзор, в котором клетки рассматриваются как единицы живой материи, не может быть полным, если мы не коснемся вирусов. Хотя вирусы и не являются живыми, они представляют собой образующиеся биологическим путем надмолекулярные комплексы, которые способны к самовоспроизведению в соответствующих клетках-хозяевах. Вирус состоит из молекулы нуклеиновой кислоты и окружающей ее защитной оболочки, или капсида, построенной из белковых молекул. Вирусы существуют в двух состояниях. Вне сформировавших их клеток вирусы представляют собой [c.48]

    Жизненный цикл вируса состоит из двух последовательных фаз - внеклеточной, во время которой он существует в виде вириона (нуклеиновая кислота в капсиде и мембране) и внутриклеточная, во время которой вирус раздевается и существует внутри клетки-хозяина в виде реплицирующейся (т.е. производящей собственные копии) молекулы нуклеиновой кислоты. Во время внутриклеточной фазы наряду с репликацией нуклеиновой кислоты образуются вирусные белки. Материал, энергия и аппарат для создания молекул белка капсида вируса берутся у клетки-хозяина, а сам [c.91]

    G-белок-сопряженные рецепторы Белок оболочки HIV-l Белки капсида HSV Щелочная фосфатаза человека ДНК-полимераза а человека Липаза поджелудочной железы человека Гемагглютинин вируса гриппа Интерлейкин-2 Белок вируса Лаоса [c.145]

    Капсид любого вируса построен из 5—6 белковых субъединиц [c.79]

    На молекулах репликативной формы ДНК происходит синтез не только (+)цепей ДНК, но и вирус-специфических мРНК- Следует сказать, что синтез мРН К должен предшествовать появлению новых молекул (+)цепей ДНК, так как без вирус-специфических мРНК в зараженной клетке не может появиться белок А. Трансляция фаговых мРНК приводит к накоплению вирус-специфических белков, в том числе и структурных, которые — при достаточной концентрации — начинают превращаться в сложные структуры— предшественники вирусного капсида. Генерируемые на этой стадии (+)кольца в результате специфических взаимодействий с белками фага вовлекаются в процесс сборки вириона. Тем самым предотвращается ставший уже ненужным переход -Ь)цепей в репликативную фор.му. [c.274]

    Капсиды некоторых вирусов "осложнены" дополнительными структурами Так, например, у аденовируса капсид формируется в виде икосаэдра с 6 капсомерами вдоль каждого ребра, всего в капсиде 252 капсомера, из которых 240 имеют сферическую форму и располагаются вдоль ребер и на гранях икосаэдра Каждый капсомер соседствует с 6 другими капсомерами, поэтому они называются гексамерами, или гексонами (в рассматриваемом примере их 240) Остальные 12 капсомеров располагаются на 12 вершинах икосаэдра и соседствуют с 5 капсомерами (п е н т а м е р, или п е н т о н) Эти 12 капсомеров (пептонов) состоят из сферического основания и длинной нити, которая может обеспечивать прикрепление вириона к клетке (рис 21) [c.81]

    Нуклеопротеидные частицы, известные под названием вирусов, атакуют самые разные живые организмы — от мельчайшей микоплазмы до человека. Они не обладают собственным метаболизмом и оживают , лишь когда содержащаяся в них нуклеиновая кислота проникает в живую клетку. Вирусы привлекают к себе большое внимание не только в связи с тем, что они являются болезнетворными агентами, но также и потому, что широко используются в молекулярно-биологических исследованиях. Зрелая вирусная частица, ил вирион, состоит из одной или нескольких молекул нуклеиновых кислот и белковой оболочки — капсида, которая имеет обычно спиральную или икосаэдрическую форму. Капсид построен из морфологических субъединиц , или капсомеров иногда хорошо различимых под электронным микроскопом. Капсомеры в свою очередь состоят из большого числа белковых субъединиц меньшего размера. Некоторые крупные вирусные частицы имеют мембраноподобную оболочку. Другие, например Т-четные бактериофаги, инфицирующие Е. oli, весьма необычны по форме (дополнение 4-Д). [c.286]

    Если природа вируса такова, что в его нуклеиновой кислоте закодирован синтез нескольких различных белковых субъединиц, которые образуют капсид вируса, то форма капсида и процесс его самосборки усложняются. [c.93]

    Капсиды с оболочкой Ретровирусы (онкогенные) вирусы саркомы, лейкозов, карциномы Тогавирусы вирус лесов Семлики, вирусы энцефалита, желтой лихорадки [c.137]

    Полиэдрические вирусы без наружной оболочки. Многие вирусы, кажущиеся сферическими, на самом деле имеют форму многогранника. Чаще всего это икосаэдр (двадцатигранник)-тело, ограниченное 20 равносторонними треугольниками и имеющее 12 вершин (рис. 4.5, В и 4.6). Капсид икосаэдрического вируса состоит из капсомеров двух типов в вершинах располагаются пептоны, состоящие из пяти белковых мономеров (протомеров) остальную поверхность граней и рёбра образуют гексоны, состоящие из шести протомеров. Построение капсида из капсомеров следует законам кристаллографии в соответствии с этим на- [c.140]


    У известных в настоящее время вирусов капсида построена до двум типам симметрии кубическому и спиральному. Большинство вирусов имеет кубический тип симметрии Белковая оболочка таких вирусов состоит из шаровидных капсомеров, образующих различные комбинации равносторонних треугольников, которые, определенным образом сочетаясь друг с другом, образуют замкнутую сферическую поверхность. К этой группе относят пи-корнавирусы, реовирусы, паповавирусы, аденовирусы, гер-песвирусы и др. [c.5]

    Примером существования аналогичных глобул в биологии является сгроение вируса гепатита (рис. 13), который имеет сплошную структуру полная вирусная частица сосгоит из двух белковых оболочек и ДНК, заключенной внутри капсида (внутренней оболочки). Интересно, что форма вируса может быть как сферическая, напоминающая фуллерен, так и продолговатая, напоминающая тубелен. [c.23]

    Любой вирус (варион) состоит из нуклеиновой кислоты (НК), защищаемой капсидой (цилиндрической или сферической оболочкой белкового типа, иногда с включением липидов и сахаров). Капсида выполняет также функцию взаимодействия с клетками чужого организма, способствуя проникновению вирусной НК внутрь клетки-хозяина и запуску там синтеза новых вирусных молекул. В случае ВИЧ сложность заключается в том, что в чужом организме он встраивается в оетки самой иммунной системы (в лейкоциты, фагоциты, лимфоциты), призванной бороться с патогенными микроорганизмами. И как только зараженный организм включает в действие защитную иммунную систему, вместе с размножением собственных иммунных клеток начинается бурный рост числа ВИЧ, и клетка-хозяин теряет генетический контроль над биопроцессами. Иммунные силы (сопротивляемость) организма, таким образом, слабеют, и у больных СПИДом возрастает вероятность заражения другими инфекциями - туберкулезом, пневмонией, лейкозами и т.д. [c.152]

    Хорошим примером дискретной системы, которую можно выделить и которая содержит тесно ассоциированные друг с другом белки и нуклеиновые кислоты, является вирус. Вирус простейшего типа состоит из РНК или ДНК, одно- либо двухцепочечной, окруженной белковой оболочкой, состоящей из идентичных или различных субъединиц, организованных в симметричную структуру. В более сложных типах вирусов имеется также внешний слой, состоящий из липидов и гликопротеинов. Между нуклеиновой кислотой и белком (белками) оболочки существует тесная взаимосвязь, генетическая информация для биосинтеза этого белка закодирована в нуклеиновой кислоте, и в то же время белок предохраняет нуклеиновую кислоту от действия нуклеаз клетки-хозяина. Еще более тесная физическая связь имеет место между белковыми субъединицами. Такая связь была продемонстрирована в результате разрушения вируса табачной мозаики, за которым следовала спонтанная самосборка белка в отсутствие нуклеиновой кислоты. Пустая оболочка, или капсида, была, однако, менее стабильна, чем содержавшие нуклеиновую кислоту реконструированные вирусные частицы. Этот результат указывает, что взаимодействия белок-ну-клеиновая кислота играют важную, хотя, вероятно, не столь значительную роль, по сравнению с белок-белковыми взаимодействиями. Вирусы, таким образом, как бы образуют смысловой мостик между предыдущим разделом и рассматриваемым ниже взаимодействием гистонов с нуклеиновыми кислотами. [c.567]

    Вирусы, содержащие неидентичные субъединицы, вынуждают, по-видимому, клетку-хозяина синтезировать вначале первичный белок, содержащий в единственной цепи последовательности субъединиц. В процессе самосборки и созревания вируса этот первичный белок селективно расщепляется (возможно, протеиназами хозяина), образуя все необходимые субъединицы. Так, предполагается, [21], что пикорнавирусы, типа энтеровирусов, собираются и соЗ ревают в ступенчатом режиме. Первичный белок вначале расщепляется на три фрагмента (VPO, VP1, VP3). Эти фрагменты, как полагают, через промежуточные формы VP0-VP1-VP3 и (VPO-VPl-VP-3)s собираются в прокапсиду (VP0-VP1-УРЗ)бо- Были выделены пустые оболочки этого типа. Затем в капсиде располагается РНК и происходит созревание посредством протеолитического расщепления VPO. В результате расщепления образуются субъединицы VP2 и VP4 и в результате созревший вирус состоит из капсиды (VPl-VP2-VP3-VP4)eo, окружающей вирусную РНК- Неизвестно, играет ли РНК какую-либо роль в управлении созреванием белков капсиды. [c.568]

    Сложные капсиды присущи и бактериофагам, например, Т-четным oli-фагам (см рис 1а), у которых имеется икосаэдрическая головка и гексагональный отросток В таблице 6 приведен перечень некоторых вирусов прокариотических и эукариотических организмов с различными типами симметрии капсидов [c.81]

    Как правило, вакцины содержат неповрежденные патогенные микроорганизмы, но при этом неживые или аттенуированные. Антитела, вырабатываемые в ответ на их введение, связываются с поверхностными белками патогенного организма и запускают иммунный ответ. В связи с этим возникает вопрос должна ли вакцина содержать целые клетки или лишь какие-то специфические поверхностные компоненты Что касается вирусов, то, как было показано, для выработки в организме-хозяине антител в ответ на вирусную инфекцию достаточно очищенных поверхностных белков вируса (белков капсида или внешней оболочки) (рис. 11.1). Вакцины, содержащие лишь отдельные компоненты патогенного микроорганизма, называют субъеди-ничными для их разработки с успехом используется технология рекомбинантных ДНК. [c.228]

    Предположим, что вы принимаете участие в работе международной организации по охране здоровья животных и вам нужно создать вакцину против крайне вирулентного вируса крупного рогатого скота. Известно, что геном представляет собой полиадени-лированную линейную одноцепочечную РНК длиной 10 т. п. н. и содержит восемь разных генов. Вирус не имеет оболочки, его основной антигенной детерминантой является белок капсида (УР 2). Какую стратегию вы используете  [c.246]

    Отсутствие патогенности делает ААВ весьма перспективным вектором для доставки в организм человека терапевтических генов. Рекомбинантный ААВ получают с помощью котрансфекции клетки-хозяина, инфицированной каким-нибудь аденовирусом (вирусом-помощником), двумя плазмидами (рис. 21.8). Одна из них несет терапевтический ген, фланкированный инвертированными концевыми повторами (длиной от 125 п. н.) ААВ, а вторая - два его гена, гер и ap, ответственные за репликацию генома и синтез капсида соответственно. После [c.496]

Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена котрансфекция клетки-хозяина, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными концевыми повторами (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), которые находятся под контролем промотора р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса разделяют центрифугированием, а оставшиеся аденовирусные частицы инактивируют нагреванием. Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена котрансфекция <a href="/info/1304812">клетки-хозяина</a>, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными <a href="/info/33238">концевыми повторами</a> (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), <a href="/info/1597898">которые находятся</a> под контролем промотора р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса <a href="/info/1007656">разделяют центрифугированием</a>, а оставшиеся аденовирусные частицы инактивируют нагреванием.
    Геном HSV представляет собой двухцепочечную молек лу ДНК длиной 152 т. п. н. Капсид вируса сливается с мембраной нейрона, и его ДНК транспортируется в ядро. Репродуктивный цикл вируса состоит из литической (репликация ДНК и образование вирусных частиц) и латентной (конденсация вирусного генома и активация как минимум дв>т( так называемых латент-но-ассоциированных промоторов) фаз. [c.498]

    Вирусы и другие нуклеопротеиды. Приаеденные примеры далеко не исчерпывают список известных нуклеопротеидных структур. Существует целый мир бактериальных, растительных и животных вирусоа, а котором обнаружено поразительное многообразие вирусных частиц (вирионов) к к по строению и составу, так и по способам хранения и воспроизведения генетической информации. В отличие от клеток, где хранителем наследственности всегда является двуспиральная ДНК, а РНК служит только для переноса и реализации генетической информации, вирусы в качестве генетического материала используют как ДНК (ДНК-содержащие вирусы), так и РНК (РНК-содержащие вирусы). Геномная ДНК может быть одноцепочечной или двуспиральной, кольцевой или линейной. РНК-содержащие вирусы также чрезвычайно разнообразны они могут содержать одноцепочечную или дауспиральную РНК, их геном может быть представлен одной или сразу несколькими молекулами РНК, упакованными в одну капсиду. [c.404]

    Препараты для ЭМВ готовят методом негативного контрастирования. Для этого смешивают равные объемы вирусной суспензии и 1%-го раствора фосфорно-вольфрамовой кислоты ( негативная краска ) на формваруглеродной подложке. Краска окружает вирусную частицу и контрастирует наружную оболочку вириона, а иногда проникает внутрь капсида, в результате чего получают профильное изображение наружной оболочки. Для выявления вирусов в биологическом материале применяют также метод ультратонких срезов. [c.267]

    При данной форме гепатита нередко выявляется, помимо частиц Дейна, еще один вид вирусных частиц — дельта-частицы (или дельта-антиген). Характерной особенностью дельта-частиц является зависимость их репродукции от репродукции частиц Дейна. Это мелкие РНК-содержащие вирусы, поверхностный (капсид-ный) белок которых представлен HBsAg. Они получили наименование HDVи будут рассмотрены ниже. [c.305]

    Подобно рассмотренной з предыдущем разделе самосборке капсидов вирусов, жгутиковые нити бактерий также обладак)т свойством самосборки [4]. Диаметр нитей 135 А, длина - несколько десятков микрометров. Нити имеют спиральный характер, состоят из субъединиц белка флагеллина, расположенного так, что нить имеет вид полой спирали (рис. 5.9, а), в которой на один виток приходится 8-10 белковь,х субъединиц. При нагревании [c.100]

    Если белки капсида синтезированы, то само Образование из них капсида может происходить не трлько в клетке, но и in vitro путем самос рки. Простейшие примеры самосборки наблюдались на вирусе спирального типа -вирусе табачной мозаики (ВТМ) и вирусе шарового (точнее см. ниже) типа - вирусе мозаики костра (ВМК). [c.92]

    Вирус табачной мозаики (рис. 5.1) представляет собой полый цилиндр длиной 3000 А, с внутренним диаметром 40 А и внешним диаметром 180 А. Каждый вирус ВТМ содержит 2200 белковых субъединиц, расположенных в виде правой спирали, в которой на один виток спирали приходится 16 1/3 субъединиц. Цепь РНК, длиной 6600 нуклеотидов, располагается также в виде спирали между последовательными витками белковой спирали. Самосборка ВТМ in vitro из белка и РНК начинается ср связывания двойного диска белка ВТМ с участком молекулы РНК, отстоящим от конца молекулы РНК примерно на 750 нуклеотидов (см. ниже). Образовавшийся кусочек белково-нуклеиновой Спирали служит затравкой для последующей конденсации белковых субъединиц совместно со спиралью РНК в цилиндрическую спиральную структуру ВТМ (см, рис. 5.1). Электронно-микроскопические исследования показывают, что соседние витки белковой спирали на внешнем радиусе цилиндра ВТМ соприкасаются плотно, а на внутреннем радиусе несколько отходят друг от друга. При самосборке капсида ВТМ цепь РНК протягивается сквозь полость цилиндра и укладывается изнутри в зазор между последовательными витками белковой спирали. При этом участок цепи РНК, примыкающий к 3-концу нуклеиновой кислоты, остается не закрытым белковой оболочкой, а для построения капсида используется участок РНК, прилегающий к 5-концу нуклеиновой кислоты, который последовательно протягивается через внутреннюю полость цилиндра ВТМ. Авторы [5] предполагают, что участок РНК длиной 750 нуклеотидов, прилегающий к З -концу нуклеиновой кислоты, используется (при сборке кап- [c.92]

    Примером шаровидного вируса животных может служить вирус гепатита В (обладающий самой короткой ДНК из всех известных вирусов животных), вызьшаюший острое, хроническое и онкогенное заболевания печени человека (которыми в настоящее время больны около 200 млн. человек во всем мире). Его структура изображена на рис. 5.2. Оболочка вируса состоит из типичных мембранных липидов (табл. 5.1) и представляет собой липидный бислой, в котором размещены димеры полипептидов PI и РП, представляющие собой поверхностный антиген HBsAg. Диаметр капсида равен 270 A (диаметр капсида без ДНК 220 A), молекула основного белка капсида состоит из 185 аминокислот и представляет собой центральный антиген. Длина замкнутой кольцевой молекулы ДНК, заключенной в капсиде, составляет 3200 нуклеотидов предполагается, что приблизительно половина кольца является двухнитевой, а половина - однонитевой [7]. [c.93]

    РентгенЬструктурный анализ, электронно-микроскопические и химические исследования показывают, что шаровидные вирусы на самом деле обычно имеют форму икосаэдров (многогранников с двадцатью гранями в виде равносторонних треугольников, тридцатью ребрами и двенадцатью вершина1ш, рис. 5.3). Капсид такого вириона состоит из капсомеров двух типов пентамеров, расположенных в вершинах, и гексамеров, которые заполняют треугольные грани. Каждый пентамер содержит пять одинаковых единиц, а гексамер - шесть таких единиц. Наименьший возможный икосаэд-рический капсид должен иметь двенадцать пентамеров и не содержит гексамеров. Следующий по величине капсид состоит из двенадцати пентамеров и двадцати гексамеров. Самый крупный известный икосаэдрический капсид содержит 1472 капсомера. [c.93]

    Строение вирусов. Вирусная частица, называемая также вирионом, состоит из нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой. Эту оболочку называют капсидом. Такая единица (капсид -ь + нуклеиновая кислота = нуклеокапсид) может быть голой , а в других случаях окружена оболочкой (рис. 4,2 и 4.3). Голыми нуклеокапсида-ми являются, например, частицы вируса табачной мозаики, вируса, вызывающего бородавки, и аденовируса. Дополнительная оболочка окружает вирусы гриппа и герпеса. [c.136]

    Капсид в свою очередь состоит из субъединиц-капсомеров. Он чаще всего имеет симметричное строение. Различают два вида симметрии-сшральную и кубическую. В табл. 4.1 различные вирусы сгруппированы по их структуре. Ниже будут рассмотрены четыре вируса, которые известны как возбудители болезней два вируса со спиральной симметрией, из них один с голыми частицами (вирус табачной мозаики) и один с дополнительной оболочкой (вирус гриппа), и два типа вирусов с кубической симметрией-с голыми частицами (вирус полиомиелита и другие полиэдрические вирусы) и с оболочкой (вирус герпеса). [c.136]

    Капсиды с оболочкой Миксовирусы вирусы гриппа, вирусы парагриппа (свинка, корь) [c.137]


Смотреть страницы где упоминается термин Вирусы капсид: [c.40]    [c.364]    [c.545]    [c.274]    [c.562]    [c.266]    [c.80]    [c.93]    [c.49]    [c.953]    [c.134]    [c.137]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Капсид



© 2025 chem21.info Реклама на сайте