Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицилглицин комплексы с металлами

    Простые ДИ-, три- и тетрапептиды образуют комплексы с ионами переходных металлов. Одна из наиболее изученных систем — это Си + с глицилглицином. В результате интенсивных исследований было показано, что моноанион Gly-Gly- образует с Си + комплекс состава 1 1 при pH ниже примерно 4. Этот комплекс способен диссоциировать с отщеплением протона (р/Со=4,38). Эти два равновесия приведены ниже  [c.125]


    Взаимодействие пептидных групп с ионами щелочных и щелочноземельных металлов, по-видимому, имеет в значительной степени ионный характер, но получены доказательства того, что это взаимодействие сохраняется и в растворе. Химические сдвиги протонов в спектрах ядерного магнитного резонанса (ЯМР) указывают на то, что взаимодействие металл — амидный кислород аналогично тому, которое описано для структур, существующих в растворах М-метилацетамида и ионов А1 +, ТЬ , Мд + и Ы+ в таком же порядке уменьшаются длины связей металл—лиганд [46, 47]. Не будучи специфическим свойством отдельных связей, взаимодействия металл — карбоксильный кислород и металл — пептидный кислород доказываются также тем фактом, что растворимость аминокислот и пептидов в воде изменяется в присутствии галогенидов щелочных и щелочноземельных металлов [48]. Например, [Са(Н01у-01у-01у) (Н20)2]С12-Н20 (XV)—это только один из ряда стехиометрических комплексов, которые образуют с аминокислотами и пептидами хлориды, бромиды и иодиды Са(П), 5г(П) и Ва(П). Для всех выделенных комплексов найдено, что растворимость пептида в растворе соли больше, чем в чистой воде [48]. Дополнительным доказательством взаимодействия кальция с пептидом в растворе служит наблюдение обратного факта — растворимость иодата кальция в воде возрастает в присутствии глицилглицина и некоторых других пептидов и аминокислот [49]. Увеличение растворимости иодатов щелочноземельных металлов было использовано для определения констант устойчивости комплексов металлов с пептидами в растворе [50]. И термодинамическая, и кинетическая устойчивость этих комплексов невелика. [c.164]

    Так как было показано, что тяжелые металлы влияют па активность пептидаз, представлялось интересным для сравнения изучить в Гияние тяжелых металлов на кислотный гидролиз пептидов. Добавка ионов кобальта к смеси кислота — пептид понижает величины и Аб", однако скорость гидролиза при 54° С увеличивается. По-видимому, при этом образуется кобальтовый комплекс пептида, хотя структура его до сих пор еще не установлена. Первая пептидная связь в трипептиде диглицилглицине расщеплялась в 8 раз быстрее, чем в глицилглицине, причем этот эффект в значительной степени обусловлен энтропийным фактором. При сравнении с карбоксипептидазой было показано, что высокая скорость гидролиза этим ферментом связана с уменьшением АЯ и увеличением Аб" [98]. [c.389]


    Миер [37] показал, что образование комплексов с диаминами значительно повышает каталитическую активность ионов железа (на 300%) и ионов марганца (на 480%) в реакции окисления льняного масла интересно, что комплексообразование с этими лигандами почти не повлияло на каталитическую активность иона кобальта. По отношению к марганцу активирующим лигандом является дисалицилиденэтилендиамин, а по отношению к железу — о-фенантролин. Для проявления активности важно образование цикла из пяти или шести звеньев, который включает ион металла, связанный с азотом. М. Т. Бек установил, что комплексные соединения двухвалентного кобальта с глицилглицином и гистидином катализируют окисление аскорбиновой кислоты кислородом. Бек предполагает, что в данном случае происходит активация координационносвязанного кислорода соединение, содержащее трехвалентный кобальт, не обнаруживает активности в этой реакции [41]. Медь в виде иона катализирует самые разнообразные окислительные реакции окисление аскорбиновой кислоты, гидрохинона, цистеина, глютатиона и т. п. Нам удалось обнаружить вещества, несколько активирующие оксидазную функцию меди. В этих случаях сложный комплекс активатор — медь —> субстрат окисляется быстрее, чем комплекс медь — субстрат. Активатором оксидазной функции является гистидин, обладающий хотя и слабым, но вполне отчетливым активирующим действием на ион меди [34]. По отношению к окислению пирогаллола медно-гистидиновый комплекс оказался неактивным. [c.155]

    Ряд методов подтверждает существование в растворах металлов с пептидами пятичленных хелатных колец, в которых донорами являются атомы азота аминогрупп и пептидные атомы кислорода. Например, в ПМР-спектре глицилглицина в ОгО имеются два сигнала протонов, обусловленных двумя неэквивалентными группами —СНу—. При добавлении ионов Сс1 + к раствору один сигнал сдвигается сильнее, чем другой. Более чувствительный сигнал должен принадлежать СНг-группам, которые расположены ближе к донорным атомам, т. е. СНа-группам, находящимся между НН2- и пептидной группами. Оказалось также, что при добавлении к раствору малых концентраций ионов Си + этот сигнал исчезает первым (вследствие селективного парамагнитного уши-рения линии). Это доказывает, что первоначальные места хелатообразования для С(12+ и Си + одни и те же. До сих пор эксперимент лишь идентифицировал протоны, которым соответствуют определенные частоты в спектрах ЯМР, при этом предполагалось, что донорные группы известны. Распространяя эти подходы на комплексы Сс1(11) с аминокислотами и пептидами с боковыми цепями, можно дать расшифровку, которая не зависит от этого лредположения. Таким способом были подтверждены места координации в глицилглицине [56]. В спектрах три- и тетрапептидов при низких значениях рО сигналы, которые исчезают в присутствии ионов Си +, всегда принадлежат метиленовым протонам остатка аминокислоты с концевой ННг-группой это вновь приводит к заключению, что хелатообразование осуществляется по атому азота аминогруппы и первому пептидному кислородному атому [57]. [c.165]

    Катализ ионами металлов особенно распространен в реакциях гидролиза и переноса с участием ацилпроизводных, где происходит, по-видимому, активация карбонильной группы по отношению к нуклеофильной атаке и связывание металла с уходящей группой, облегчающее ее отщепление. Первый тип активации получил прямое подтверждение на примере реакций комплексов Со(П1), которые очень медленно обменивают лиганды [111]. Группа Со(триэтилентетрамин) , которая катализирует быструю реакцию конденсации двух молей этилового эфира глицина с образованием этилового эфира глицилглицина, выступает в роли как активирующей, так и защитной группы. Продуктом реакции является соединение глицилглицина XLVII, [c.97]

    Наличие связанной с металлом гидроксильной группы в сочетании с внутримолекулярной реакцией привело к одному из самых больщих увеличений скорости реакции, характерному для ненапряженных систем. Комплекс глицилглицина с (Этилендиа-мин)2Со + и ч с-гидроксилом [уравнение (2.33)] гидролизуется при pH =7 почтив 10 раз быстрее, чем свободный глицилгли-цин 34], [c.69]


Смотреть страницы где упоминается термин Глицилглицин комплексы с металлами: [c.126]    [c.240]    [c.175]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.155 , c.169 , c.170 , c.176 , c.177 , c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы



© 2025 chem21.info Реклама на сайте