Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды, гидролиз кислотный

    Глутамин разлагается уже при умеренном нодкислении с нагреванием нри полном кислотном гидролизе происходит разложение триптофана, аспарагина и большинства пептидов. Еслп кислотный гидролиз ослабляет [c.431]

    Белки свеклы имеют кислотные свойства (точка коагуляции при pH 3,5), содержат больше кислых аминокислот — глутаминовую, аспарагиновую и др. Они гидролизуют с образованием низкомолекулярных пептидов и аминокислот аланин- валин, гликокол, лейцин, изолейцин, фенилаланин, -аминомасляная, тирозин, серии, треонин, цистин, метионин, пролин, триптофан, аспарагиновая, глутаминовая, гистидин. [c.6]


    Для кислотного гидролиза белков и пептидов помимо 5,7 н. НС1 используют также сульфокислоты. Более легкому гидролизу пептидных связей, образованных гидрофобными аминокислотами, способствует проведение гидролиза в смеси концентрированной НС1 и сильной органической кислоты, например трифторуксусной (2.1). Время гидролиза в этом случае ограничивается 25, 50 и 75 мин. Температура гидролиза 166 С. [c.123]

    Частичный гидролиз белка является самым несовершенным звеном в определении строения молекулы белка. Как уже отмечалось выше, кислотный гидролиз может привести к образованию вторичных продуктов распада, а ферментативный — вызвать вторичный синтез пептидов. Более совершенными были бы методы, позволяющие устанавливать строение белка без предварительного гидролиза. К таким методам относятся упомянутое выше последовательное отщепление аминокислотных остатков. [c.516]

    Несмотря на низкую специфичность пепсина, из гидролизата цепи А инсулина был выделен большой N-концевой пептид, состоящий из тринадцати аминокислотных остатков, что в сочетании с данными по составу пептидов, образующихся в результате частичного кислотного гидролиза, позволило установить последовательность аминокислот в цепи А инсулина [267]. [c.209]

    Тиазолидин (ХС), который очень легко образуется при действии ацетона на цистеин в присутствии кислоты, был использован в синтезе пептидов [459], в том числе глутатиона [460]. Таким же образом был защищен пеницилламин [461]. Защитную группу можйо отщепить кислотным гидролизом в мягких условиях или же действием сулемы. [c.252]

    Среди других пептидов, полученных при кислотном гидролизе цепи А, обнаружены следующие  [c.1068]

    Полный кислотный гидролиз ДИФ-пептида приводит к желтому ДНФ-производному Л -концевого остатка вместе со свободными аминокислотами и аминокислотами, меченными только в боковую цепь, такими продуктами как е-ДНФ-лизин и 0-ДНФ-тирозин. За исключением а-ДНФ-аргинина, сс-ДНФ- (или бис-ДИФ)производные Л -концевого остатка можно экстрагировать из подкисленного водного раствора подходящим органическим растворителем, например этилацетатом, и идентифицировать с помощью тонкослойной хроматографии. [c.266]

    До развития методов последовательной дегидратации пептидов и белков, ДНФ-метка Л -конца с последующим частичным гидролизом широко использовалась. Зоны, отвечающие пептидам, содержащим концевой ДНФ-остаток, можно выделить, разделить и анализировать аминокислоты после полного кислотного гидролиза. Таким путем можно устанавливать короткие последовательности. [c.266]


    Ионообменную хроматографию широко используют и для разделения неорганических соединений, а в органической химии — для разделения смесей кислот или оснований. Классическим примером является разделение смесей аминокислот, образующихся при гидролизе пептидов и белков [43]. Пептиды, белки и ферменты, содержащие кислотные и (или) основные группировки, также могут быть разделены с помощью ионообменной хроматографии. Интересные возможности открываются при использовании сильноосновных смол в бисульфитной форме [44]. Когда смесь альдегидов и кетонов пропускают через такую смолу, они обратимо связываются со смолой в виде бисульфитных комплексов это позволяет разделить компоненты смеси. [c.321]

    Для изучения аминокислотного состава белков пользуются сочетанием кислотного (НС1), щелочного [Ba(OH)J и, реже, ферментативного гидролиза или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии либо в виде коротких пептидов или комплексов с другими органическими веществами. [c.33]

    Методы частичного гидролиза используются широко, но почти все они лишены специфичности и поэтому пригодны только для получения мелких фрагментов, например на конечных этапах расщепления больших пептидов. Самым старым из методов неспецифического частичного гидролиза является частичный кислотный гидролиз. [c.34]

    В. ЧАСТИЧНЫЙ КИСЛОТНЫЙ ГИДРОЛИЗ БЕЛКОВ И ПЕПТИДОВ [c.167]

    Разделение и идентификация смеси коротких пептидов, которые могут получаться при частичном кислотном или щелочном гидролизе, а также при неспецифическом ферментативном расщеплении полипептидов и подобных больших молекул, все еще представляют собой довольно трудные задачи, требующие для своего решения сложного оборудования и больших затрат времени. ГХ таких смесей может значительно упростить процедуру, хотя проблема идентификации остается нерешенной. В сущности преимущество ГХ состоит в том, что разделенные соединения можно регистрировать при низких концентрациях, выделять свободными от различных 12-439 [c.337]

    Помимо а- и е-аминогрупп дансилхлорид вступает в реакцию с ОН-группами тирозина, 5Н-группами цистеина и имидазольными кольцами гистидина (два последних соединения неустойчивы при щелочных значениях pH), а также с аммиаком, растворенным в воде. При взаимодействии ДНС—С1 с аммиаком образуется дансилсульфо-намид (ДНС-ЫНг). При щелочных значениях pH, дансилхлорид подвергается гидролизу с образованием дансилсульфоновой кислоты (ДНС—ОН). После окончания реакции дансилирования модифицированный белок или пептид подвергают кислотному гидролизу. Боль- [c.148]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Однако, прежде чем говорить о законченной структуре, оставалось выяснить еще одну деталь, а именно строение двух аминокислот. Некоторые аминокислоты встречаются в двух формах. Таковы глутаминовая кислота и глутамин. В глутаминовой кислоте имеется две карбоксильные группы, тогда как в глутамине место одного из карбоксилов занимает амидная группа. Это различие придает им и различные свойства в молекуле белка. Точно так же существуют аспарагиновая кислота и аспарагин. При кислотном гидролизе глутамин превращается в глутаминовую кислоту, а аспарагин в аспарагиновую кислоту. Поэтому после кислотного гидролиза белка нельзя сказать, в какой форме присутствовали аминокислоты в исходной цепи. Вопрос был разрешен косвенными путями один из них — это сравнение продуктов, полученных при расщеплении одного и того же пептида путем кислотного гидролиза и воздействием ферментов, которые не разрушают амидных групп. [c.98]


    Особую проблему представляет анализ пептидов на содержание триптофана, так как обычный кислотный гидролиз в этом случае не приемлем. Обычно эту задачу решают при помощи щелочного гидролиза [86, 99]. Пептиды гидролизуют в запаянных вакууми-рованных ампулах из пирекса 12%-ным раствором едкого натра в течение 22 час при 110°. Гидролизат подкисляют соляной кислотой до pH 2 и отфильтровывают кремневую кислоту, образующуюся при взаимодействии стекла со щелочью. Перед введением в аминокислотный анализатор образец разбавляют до концентрации натрия не более 0,2 М. Образования кремневой кислоты можно избежать, используя тефлоновую ампулу с завинчивающейся крышкой и проводя гидролиз 15%-ным раствором едкого натра в течение 16 час при 110° [90] правда, для подобных целей иногда требуется более надежная герметичность. Маршалл [64] показал, что в случае триптофа-ноБых пептидов наиболее надежные и воспроизводимые результаты можно получить, применяя полный ферментативный гидролиз. Новый метод быстрого и полного ферментативного гидролиза был разработан [c.113]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]

    Еше один метод определения N-концевой аминокислоты в белках и пептидах был предложен Шоу (1961). В этом методе используется кристаллический а-ацетил-р-этокси-Н-карбэтоксиакриламид II, получаемый присоединением уретана к дикетену с последующей реакцией образовавшегося N-ацетоацетилуретана I с ортомуравьиным эфиром и уксусным ангидридом. Реагент II в слабощелочном водном растворе быстро реагирует с пептидом, при этом образуется соответствующее 5-ацетилурацильное производное III. При последующем кислотном гидролизе получается смесь аминокислот и замещенный урацил IV из концевой аминокислоты. [c.692]

    Флюоресцамин при опрыскивании реагирует не более чем с 10% общего количества каждого пептида, поэтому материал из каждого пятна соскребали, переносили в пастеровскую пипетку с пробкой из стеклянной ваты, откуда пептид алюпровали тремя порциями (по 0,2 мл) 6 н. НС1 с добавлением 0,02% -меркаптоэтанола. Элюат отфильтровывали от следов целлюлозы на мембранном фильтре и подвергали кислотному гидролизу для аналпза аминокислотного состава пептида. [c.487]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    В основе метода динитрофенилирования лежит реакция свободных ЫНг-групп белка или пептида с 2,4-динитрофторбензолом (ДНФБ) в щелочной среде, при которой образуются соответствующие динитрофенильные производные (ДНФ-производные). В реакцию с ДНФБ, кроме свободных а-ЫНг-групп, вступают также е-ННг-группа лизина, 5Н-группа цистеина, ОН-группы оксиаминокислот и имидазольный гетероцикл гистидина. ДНФ-производное белка или пептида подвергают полному кислотному гидролизу. Ы-концевые ДНФ-амино-кислоты экстрагируют из гидролизатов эфиром, отделяя их от свободных аминокислот и ДНФ-производных по другим функциональным группам аминокислот, которые растворимы в воде. Идентификацию [c.145]

    Реакцию белков и пептидов с ДНФБ и все последующие манипуляции следует проводить в темноте, так как ДНФ-производные на свету разлагаются. Необходимо также учитывать, что ДНФ-аминокисло-ты разрушаются и при кислотном гидролизе (особенно сильно разрушаются ДНФ-производные глицина, пролина, оксипролина, цистеина, триптофана, что требует дифференциальных условий гидролиза). [c.146]

    Пептид (или белок) обрабатывают 2,4-динитрофторбензолом в слабо щелочной среде (pH 9) при 20—25°. Образующиеся 2,4-динитрофе-нильные производные не распадаются во время кислотного гидролиз  [c.510]

    Связь с динитрофенильпой группой устойчива к кислоте, и поэтом " после полного кислотного гидролиза меченого пептида высвобождалась-динитрофенилированная аминокислота (соединение, имеющее желтую-окраску), которая находилась ранее на Ы-конце цепи. Кроме того, Сэнгер использовал меченые е-аминогруппы остатков лизина. Частичный кислотный гидролиз меченых пептидов приводил в этом случае к образованию небольших фрагментов, для которых затем определяли аминокислотный состав. В конце концов Сэнгер сложил фрагменты полученной аминокислотной мозаики и установил последовательность двух цепей молекулы инсулина, содержащих 21 и 30 остатков и связанных между собой в цельной молекуле дисульфидными мостиками (рис. 4-13) В последние годы вместо фтординитробензола чаще применяют дансил- [c.175]

    ЛЗ. Известно, что пептид содержит только Е-лизин и Е-метионин. Р1з данных по титрованию следует, что на каждую свободную карбоксильную группу пептида приходятся 3 свободные аминогруппы. При обработке пептида азотистой кислотой (HNO2) в аппарате Ван-Слайка каждая аминогруппа освобождает 1 моль N2. Если провести полный кислотный гидролиз дезаминированного пептида и вновь обработать гидролизат HNO2, то высвобождается то же количество N2, что и из исходного пептида. Обработка исходного пептида избытком динитрофторбензола дает динитрофенильный (ДНФ-) пептид, который по спектрофотометрическим данным содержит по три ДНФ-группы на каждую свободную карбоксильную группу. После полного гидролиза этого ДНФ-пептида выявляются следующие продукты бесцветное соединение, содержащее S (Ai) соединение желтого цвета, содержащее S (Аг), и соединение желтого цвета, не содержащее S (Аз). При частичном гидролизе ДНФ-пептида образуются Ai, А2 и Аз и еще четыре соединения, имеющие желтую окраску—Bi, В2, Вз и В4. При полном гидролизе из Bi образуется Ai, А2 и Аз из 2 — Ai и А2 из Вз—-Ai и Аз, а из В4 — только A3. Какова наиболее вероятная структура исходного пептида  [c.192]

    Для повышения специфичности расщепления сложноэфирной связи по сравнению со специфичностью кислотного гидролиза Эллиот ацилировал свободные аминогруппы при pH 5. В результате обработки ацилированного белка 0,01 и. щелочью при комнатной температуре в течение 1,5 час значительно увеличивается количество диализуемого азрта, что согласуется с гидролизом эфирной связи с образованием смеси ацетил- или формилсерилпептадов. От этих пептидов ацильные группы были отщеплены обработкой на холоду раствором хлористого водорода в метаноле окисление перйодатом продукта реакции позволило установить, что из общего числа остатков серина в цепи 62% составляют концевые свободные остатки. Описанные выше реакции, которые Эллиот [96] использовал для селективного расщепления Пептидных цепей по остаткам серина и треонина, протекают по следующей схеме  [c.219]

    В синтезах пептидов с применением метиловых эфиров для защиты концевой карбоксильной группы могут встретиться затруднения в омылении эфира без сопутствующего частичного гидролиза пептидных связей. Пб этой причине для защиты карбоксильной группы часто прибегают к бензиловым эфирам, которые можно легко получить прямой этерификацией, применяя бензолсульфокислоту [402] или полифосфорную кислоту [403] в качестве катализатора (см. также [2]). Бензиловые эфиры можно снова превратить в свободные карбоновые кислоты каталитическим гидрогенолизом [2, 64], действием металлического натрия в жидком аммиаке [404] или же кислотным или щелочным омылением. Следует отметить, что неги-дролитически, действием бромистого водорода в уксусной кислоте, можно отщепить группу ЫНСООСНаСеНв, но не НСООСНгСвНв [120]. Защита карбоксильной группы в аминокислотах и пептидах превращением в бензиловые эфиры, несомненно, тесно связана с применением карбобензилоксигруппы для защиты аминогрупп (см. раздел Уретановые производные , стр. 209). Обе защитные группы обычно отщепляются при действии одних и тех же реагентов, за исключением одного упоминавшегося метода. [c.245]

    Один нз методов идентификации Л -концевой аминокислоты пептида нли белка состоит в замещении -аминогруппы иа такую груп-. пу, которая выдерживает гидролиз, и таким образом, после кислотного нлн ферментативного гидролиза меченую аминокислоту можно обнаружить спектрофотометрнчески, спектрофлуорометри-чески илн по радиоактивности и идентифицировать с помощью хроматографии. [c.264]

    Аналогично использованию многих уретановых производных для защиты аминогрупп существует целый набор простых эфиров, которые можно использовать для защиты карбоксильной группы. Так, бензиловые эфиры (расщепляемые гидрогенолизом илн сильными кислотами) и г/ ет-бутиловые эфиры (расщепляемые кислотной обработкой, но в более мягких условиях) нашли широкое применение для защиты С-терминальиых и боковых карбоксильных групп в производных аминокислот и пептидов. Подобным образом могут быть использованы некоторые содержащие заместители в кольце бензиловые и другие сложные эфиры, аналогичные урета-нам, приведенным в табл. 23.6.1. Эфиры с простыми алкилами (метил или этил), расщепляемые омылением, находят лишь ограниченное применение для защиты карбоксильной функции. Хотя производные пептидов со сложноэфирной группой на С-конце существенно более электрофильны, чем обычные алифатические сложные эфиры (благодаря электронооттягивающим свойствам а-кар-боксамидного заместителя), условия для их расщепления в щелочной среде слишком жестки для пептидов, за исключением самых простых. В общем случае они также непригодны для защиты карбоксильной функции в боковой группе (см. разд. 23.6.2.3) соответствующие уретаны в этих условиях продвергаются внутримолекулярной циклизации в производные гидантоина (см. разд. 23.6,2.1) вместо обычного гидролиза. Тем не менее метиловый и этиловый эфиры являются важными промежуточными продуктами для получения С-терминальных гидразидных производных для продолжения пептидного синтеза азидным методом (см. разд. 23.6.3.4). [c.380]

    Дипептидазы. Процесс переваривания пептидов, их расщепление до свободных аминокислот в тонкой кишке завершают дипептидазы. Среди дипептидаз кишечного сока хорошо изучена глицилглицин-дипептидаза, гидролизующая соответствующий дипептид до двух молекул глицина. Известны также две другие дипептидазы пролил-дипептидаза (пролиназа), катализирующая гидролиз пептидной связи, в образовании которой участвует СООН-группа пролина, и пролин-дипептидаза (пролидаза), гидролизующая дипептиды, в которых азот пролина связан кислотно-амидной связью. [c.423]

    Загрязнения образца, обусловленные неподвижными фазами, являются результатами химической нестабильности или разрушения насадки или одновременного элюирования загрязнений, содержащихся в матрице насадки. Первая ситуация, вероятно, наблюдается при использовании привитых силикагелей или ионообменников (на основе смол или силикагеля). Например, почти все доступные сейчас привитые фазы на основе силикагеля получают с силоксановой связью —Si—О—Si— между матрицей силикагеля и привитой группой на поверхности. Хотя эта связь является термически стабильной (допускает использование определенных связанных фаз в газовой хроматографии), реакции, используемые для ее получения, обратимы [116, 117]. Эта часто не принимаемая во внимание характеристика обусловливает гидролитическую нестабильность, которая становится значительной в кислотных или щелочных условиях. Часто случается, что условия, ускоряющие гидролиз привитой фазы (например, очистка пептидов на ig с использованием водной подвижной фазы, содержащей трифтороуксусную кислоту при pH 2- 3), способствуют также удерживанию продуктов гидролиза на насадке (например, октадецилдиметилсиланол удерживается на is в водном растворе). При этом образуется in situ поверхностная фаза с разделительными свойствами, [c.75]

    Определение кислотности должно служить мерилом степени гидролиза казеина. Степень гидролиза белковых веществ определяется двумя величинами во-первых, количеством растворившегося перво-. начального вещества и, во-вторых, глубиной распада, так как гидролитический распад белковых веществ имеет несколько степеней он идет от белкового вещества через образование растворимых в воде альбумоз и пеатонов, полиаептидов и пептидов к аминокислотам и заканчивается выделением аммиака последний может содержаться в вытяжке из казеина в таком количестве, что жидкость приобретает. щелочную реакцию. [c.106]

    Сэнгер и Туппи [72] применили этот метод при расшифровке структуры В-цепи инсулина. Выделив и проанализировав не менее 60 пептидов, им удалось расшифровать только четыре участка цепи, включающих всего 19 остатков аминокислот. В частичных кислотных гидролизатах, помимо пептидов, встречается до 25% свободных аминокислот [54]. В ходе кислотного гидролиза полностью разрушается триптофан [53] и в значительной степени повреждаются оксиаминокислоты [65]. [c.35]


Смотреть страницы где упоминается термин Пептиды, гидролиз кислотный: [c.39]    [c.147]    [c.743]    [c.149]    [c.142]    [c.209]    [c.515]    [c.192]    [c.120]    [c.165]    [c.231]    [c.233]    [c.257]    [c.147]   
Аминокислоты, пептиды и белки (1976) -- [ c.166 , c.167 ]




ПОИСК







© 2024 chem21.info Реклама на сайте