Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые превращения смещение температур

    Среди различных типов протяженных дефектов выделим такие, которые с успехом могут быть исследованы методами порошковой рентгенографии. Некоторые из них (например, дефекты упаковки) уже рассматривались. Наибольший интерес представляют модулированные, или несоразмерные, структуры. Большей частью существование такт фаз связано с их кинетической устойчивостью равновесное, более упорядоченное состояние не достигается из-за очень малой скорости преобразования структуры в той области температур, в которой устойчива фаза с упорядоченной структурой. Модулированные, или несоразмерные, фазы отличаются от соразмерных тем, что сверхструктура (обычно по одно(/1у из направлений) имеет период повторяемости, не кратный трансляционной решетке субструктуры. Фазовые превращения сегнетоэлектрическая фаза - пароэлектрическая фаза, относящиеся к фазовым переходам второго рода, обычно протекают через стадию образования несоразмерной фазы, термодинамически устойчивой в узком интервале температур. Появление несоразмерной сверхструктуры в этом случае объясняется смещениями части атомов из идегшьных позиций параэлектрической фазы, величина которых (в определенных пределах) меняется периодически. В этом случае на рентгенограммах могут появляться, кроме основных линий (пятен), сателлиты, которые не индицируются в предположении соразмерной сверхструктуры или период этой сверхструктуры столь велик, что индицирование не может считаться однозначным. Другой пример образования несоразмерных фаз [c.240]


    Примеси влияют на слеживаемость аммиачной селитры не только путем смещения температур фазового превращения, но и в результате изменения формы кристаллов. В этой связи изучению модификации формы кристаллов уделяется особое внимание [7, 9, 33]. В частности, исследовалось модифицирующее влияние на кристаллы NH4NO3 соединений магния [33]. В работе выяснялась связь между содержанием введенного в селитру соединения магния и ее слеживаемостью. Примеси вводились непосредственно в плав аммиачной селитры. Испытывались Mg(N03)2, MgS04, MgO и доломит. Об эффективности действия добавки судили по образованию при вибрации образца селитры мелочи и по предельной нагрузке, при которой происходило раздавливание прессованных [c.153]

    Плавление и парообразование являются процессами фазовых превращений (к фазовым переходам относятся также сублимация и полиморфные превращения). Фазовые переходы характеризуются тем, что обе фазы могут сосуществовать, т. е. находиться в равновесии. Это значит, что путем сколь угодно малого изменения температуры и (или) давления можно вызвать сдвиг равновесия. Так, подвод небольшого количества теплоты к системе, состоящей из кипящей воды и сухого насыщенного пара, приводит к смещению равновесия в процессе,парообразования в одну сторону, небольшое сжатие — в противоположную. [c.178]

    Давление. Влияние давления определяется знаком (направление смещения равновесия) и величиной (степень смещения равновесия) изменения объема в процессе. Так, сжатие повышает температуры плавления, кипения и сублимации для этих фазовых превращений АУ > 0. В соответствии с тем, что АУ , < АУ е < А суб., Т возрастает с давлением очень мало, весьма существенно, а еще значительнее (см. рис. 11.27 и с. 128). Ясно также, что для температур плавления таких веществ, как лед, сурьма и висмут, для которых плотность кристаллической фазы меньше плотности жидкости, т. е. [c.133]

    Снижение температуры деструкции композиций указывает на то, что в них использованы инертные наполнители, которые практически разрыхляют структуру исходного полимера, что приводит к большой подвижности макромолекул системы, а также смещению температур фазовых превращений и термической деструкции в сторону понижения. [c.56]

    Изотопические эффекты при фазовых переходах. В твёрдых телах при изменении температуры или в результате внешнего воздействия (например, в магнитном поле, или под давлением) могут происходить фазовые превращения, например, переход металла из нормального состояния в сверхпроводящее, переход металл-диэлектрик, переход из парамагнитного в магнитоупорядоченное состояние (типа ферро- или антиферромагнитного), переход параэлектрик-сегнетоэлектрик. Замещение одного изотопа другим приводит к смещению фазовой диаграммы материала. Исследование таких эффектов часто позволяет прояснить природу фазовых переходов. Существует огромное количество публикаций на тему изотопических эффектов при фазовых переходах, которое не представляется возможным рассмотреть в данном обзоре. Мы отметим лишь некоторые работы, имеющие определённый (иногда исторический) интерес, отправляя заинтересованного читателя к опубликованным обзорам. [c.93]


    Влияние состава газа связано со смещением температуры фазового превращения каталитически активных поливанадатов в неактивный сернокислый ванадил [c.455]

    Одной из причин разрушения гранул являются модификационные превращения, идущие при изменении температурных условий хранения нитрата аммония. Одним из средств, замедляющих или устраняющих эти переходы, тоже может быть введение добавок различных веществ. Разрушение гранул при переходе одной модификации в другую связано с изменением объема твердой фазы. Например, переход от моноклинной модификации к ромбической бипирамидальной, обычно наблюдаемый при 32,3 °С, сопряжен с заметным уменьшением удельного объема. Использование в качестве стабилизаторов примесей приводит к смещению температуры фазового превращения или к замедлению этого процесса [4]. Одной из наиболее эффективных примесей является диаммонийфосфат, в присутствии которого гранулы аммиачной селитры выдерживают до 20—30 модификационных превращений, совершенно не разрушаясь. [c.204]

    Ценную информацию о термических превращениях дает дериватография применительно к анализу смол и асфальтенов. В совокупности с газовым объемным анализом, хромато-масс-спектрометрией и данными электронодифракционных исследований изучены многие структурные характеристики асфальтенов. Например, термогравиметрические исследования образца асфальтенов показали, что процесс термических превращений может быть охарактеризован рядом последовательных эндотермических стадий, сопровождающихся незначительными тепловыми эффектами ( 4,2 кДж/моль). В температурном интервале первого эндотермического пика не наблюдается активной термодеструкции асфальтенов. При повторном термическом анализе образцов, которые постепенно охлаждались после их динамического нагрева до 270 °С, на термограммах вновь проявляется указанный эффект, а изотермическая выдержка образцов при 240 °С в течение 150 мин не приводит к значительному изменению массы (== 2%). Полученные данные показывают, что обнаруженный тепловой эффект обусловлен обратимым фазовым переходом. При температурах выше 220 °С с увеличением энтальпии асфаль-тенового вещества, сопровождающейся эндотермическим эффектом вследствие обратимости процесса, возрастает и энтропийный фактор. Это вызывает подвижность у низкомолекулярных частиц, что определяет возникновение расклинивающего эффекта в межслоевом пространстве, приводящего к смещению в блоках. Таким [c.92]

    Когда речь идет о высокотемпературных превращениях, наблюдающихся для ряда тугоплавких окислов С А-, С -> В-переходы редкоземельных окислов, превращения в системе кремнезехма, двуокиси титана и др.), такие факторы, как дефекты структуры, примеси, т. е. незначительные нарушения химического состава, могут играть существенную роль в соотношении устойчивости рассматриваемых фаз. Оценка роли этих факторов осложнена не только трудностями теоретического порядка, но и необходимостью экспериментального получения данных об их влиянии на процесс превращения. Поэтому большой интерес представ.тяет собой попытка качественного рассмотрения зависимости термодинамической устойчивости конкурирующих фаз от малых нарушений их состава [1], а также работа по термодинамической оценке влияния концентрации дефектов на смещение температуры фазового равновесия [21, включая и случай их малой концентрации. [c.54]

    Давление. Влияние давления определяется знаком (направление смещения равновесия) и величиной (степень смещения равновесия) изменения объема в процессе. Так, сжатие повышает температуры плавления, кипения и сублимации для этих фазовых превращений А1/>0. В соответствии с тем, что < Ак с < АУеуб ,, [c.133]

    Если в процессе кристаллизации условия теплопередачи не изменяются, а теплопроводность и теплоемкость твердой фазы остаются такими же, как и для жидкой фазы, то прямая охлаждения твердой фазы совпадет с продолжением прямой охлаждения жидкой фазы. Изменение хотя бы одного из перечисленных выше факторов приводит к смещению прямой FG параллельно прямой изменения температуры охлаждающей оболочки. Площадь ABLM отвечает количеству тепла, отведенному от охлаждающегося вещества до температуры кристаллизации. Площадь BEOL соответствует тепловому эффекту фазового превращения. Однако можно доказать, что эта площадь равна площади BEF [6, с. 226]. [c.33]

    Оба примера относились к процессам фазовых превращ,е-ний (кристаллизация — плавление, парообразование—конденсация, сублимация — десублимацня, полиморфные изменения). А они характеризуются тем, что обе фазы могут сосуществовать, т. е. находиться в равновесии. Это значит, что путем сколь угодно малого изменения температуры и (или) давления можно осуществить соответствующий сдвиг равновесия. Так, подвод небольшого количества теплоты к системе, состоящей из кипящей воды и сухого насыщенного пара, приводит к смещению равновесия в процессе парообразования в одну сторону, небольшое сжатие— в противоположную. А5фп колеблются в довольно широких пределах — от небольших величин (порядка 0,1 э. е.) для превращения веществ из аморфного состояния в кристаллическое до десятков единиц для сублимации, причем очевидно  [c.47]


    Мы уже приводили несколько примеров смещения фазовых равновесий при эпитаксии, когда ка монокристальной подложке при комнатной температуре осадок кристаллизуется с метаста-бильной (высокотемпературной) фазе. Этот процесс связан с известным явлением полиморфизма, когда данное вещество может существовать в нескольких кристаллических формах, отличающихся по своим физическим свойствам. В настоящее время можно указать 4 вида полиморфизма 1) температурный, 2) барополиморфизм, 3) концентрационный и 4) пленочный. Соответствующие обратимые полиморфные превращения вещества могут возникать при изменении температуры Т, давления Р, концентрации Xi компонентов или толщины L тонкой пленки. В некоторых случаях полиморфизм вызывается совместным действием двух или даже нескольких перечисленных параметров. [c.79]

    С повышением температуры наблюдаются магнитные фазовые переходы из упорядоченного магнитного состояния наноструктуры, которому соответствует магнитная СТС, в парамагнитное (суперпарамагнитное) состояние. При 77 К спектры состоят из двух систем магнитной СТС, соответствующих а-РезОз (магнитная индукция на ядре В, = 52 Тл, квадрупольное расщепление АЕд = -0,29 мм/с) и 7-Ре20з ( п = 47,2 Тл, АЕд = О мм/с), а также некоторого вклада размытой СТС в виде монолинии (около 10 %). С повышением температуры вплоть до Т = 120 К в спектрах появляется квадрупольный дублет с АЕд = 0,78 мм/с и изомерным сдвигом относительно металлического железа д = 0,42 мм/с, однако общий характер спектров не меняется. Начиная с Г = 120 К происходит трансформация спектров, которые теперь могут быть представлены всего одной системой магнитной СТС (Б,п = 51,3 Тл, АЕд = О мм/с). Природу этой трансформации мы обсудим в других пунктах, здесь же сосредоточимся на характеристиках магнитного фазового перехода первого рода. Мессбауэровские спектры в диапазоне Т = 120 -г 300 К характеризуются обратимыми превращениями магнитной СТС в парамагнитный дублет без заметного смещения или уширения линий, характерных для магнитных фазовых переходов второго рода или суперпарамагнетизма, что свидетельствует о наличии магнитных фазовых переходов второго рода, когда намагниченность материала исчезает скачком. Эти переходы происходят при перераспределении критических температур Тсо = 120 4- 300 К, пониженных по сравнению с Го для массивных образцов а- и 7-Рс20з (856 и 965 К соответственно). Отсутствие суперпарамагнетизма для таких больших кластеров становится очевидным из оценки с помощью формулы (16.4). Если принять константу магнитной анизотропии К к 10 Дж/м и Го = 10 -г 10 с, то время релаксации магнитного момента т будет на несколько порядков величины превышать время измерения (период ларморовой прецессии ядра Ре 10 с). Таким образом, суперпарамагнетизм для подобных наноструктур не оказывает воздействия на их магнитные свойства и не может привести к понижению Гсо. В наноструктуре а- и 7-РегОз намагниченность и магнитное упорядочение исчезают за счет магнитного фазового перехода первого рода, т.е. скачком от величины В-, и 50 Тл до В-, =0. Необходимо отметить. [c.567]


Смотреть страницы где упоминается термин Фазовые превращения смещение температур: [c.160]    [c.52]    [c.493]    [c.84]    [c.19]    [c.192]    [c.439]    [c.64]    [c.283]    [c.131]    [c.55]   
Введение в термографию Издание 2 (1969) -- [ c.134 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Превращение фазовое

Смещение



© 2025 chem21.info Реклама на сайте