Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение в высокотемпературное состояние

    Правильная оценка роли отдельных составляющих нефтей в процессе образования смол и асфальтенов при высоких температурах требовала исследования высокотемпературных процессов превращения нефтепродуктов, содержащих основные компоненты (углеводороды, смолы, асфальтены) в неизменном состоянии и в широком спектре их количественных соотношений. С этой целью отбензиненная ромашкинская нефть разделялась на концентраты с различным содержанием углеводородных и неуглеводородных компонентов. Для разделения был использован предложенный М. А. Капелюшниковым метод так называемой ретроградной конденсации, или холодной перегонки [16]. В качестве растворителей были использованы углеводородные газы под давлением, и все компоненты нефти, кроме асфальтенов, удалось перевести при сравнительно низких температурах (не выше 100—140° С) в надкритическое состояние. Затем при ступенчатом снижении давления в системе осуществляется фракционирование, которое идет в обратном, по сравнению с горячей перегонкой, порядке — сначала выделяются наиболее высокомолекулярные компоненты, затем средние и т. д. Были получены образцы широкого фракционного состава (200°—к.к.) и не менее широкого компонентного состава образец 1 содержал 94,8% углеводородов и 5,2% смол образец 2— 72,4% углеводородов, 25,6% смол и 2,0% асфальтенов, образец 3— 38,7% углеводородов, 47,0 % смол и 14,3 % асфальтенов. [c.30]


    При высоких температурах, когда W яT 1, энергией межатомного взаимодействия можно пренебречь по сравнению с тепловой энергией. В этом случае сплав ведет себя как идеальный твердый раствор атомы компонентов хаотически распределены по узлам кристаллической решетки. Таким образом, вне зависимости от типа взаимодействия в твердом растворе, его высокотемпературное состояние всегда является неупорядоченным. Фазовое превращение — распад или упорядочение — имеет место в промежуточной области температур, когда яТ Ш 1. [c.14]

    Являясь элементами-аналогами, селен и сера в виде простых и сложных твердых тел существенно различаются по строению и свойствам. Сравнительно простой молекулярный состав парообразной серы усложняется в конденсированном состоянии многообразными структурно-химическими превращениями [71—77]. Основными, наиболее устойчивыми структурными модификациями серы являются восьмичленные кольца S8(Sx) и бирадикальные цепочечные структуры —S —(S(i.). Для высокотемпературных состояний серы характерно бирадикальное цепочечное строение (—S —), при более низких температурах сера устойчива в виде кольчатых молекул Ss. Селен при обычных условиях наиболее устойчив в гексагональной цепочечной форме. [c.45]

    Оказалось, что при комнатной температуре многие парафиновые смеси могут существовать не только в кристаллическом, но и в низкотемпературном (фаза Ог ц) и высокотемпературном (фаза Н , 2) ротационно-кристаллическом состояниях, а также в состоянии распада твердого раствора вследствие его полиморфного превращения [c.250]

    Изучением изменений свойств и состава вещества вследствие химических превращений под влиянием механического воздействия занимается механохимия. Природа механической активации вещества привлекает внимание широкого круга специалистов. Предполагают, что в точке контакта соударяющихся или трущихся тел вещество переходит в расплавленное, а затем в плазменное состояние ( магма — плазма модель ). При этом образование высокотемпературных точек на поверхностях связано с невысокой теплопроводностью твердых тел, вследствие чего тепло не успевает отводиться в глубь тела и расходуется на сублимацию вещества, активацию молекул и распад возбужденных молекул. Имеются данные о том, что ряды механохимической устойчивости соединений не согласуются с рядами термической устойчивости и более похожи на ряды фотохимической и радиационной устойчивости. Вследствие увеличения поверхностной энергии механохимическая активация значительно увеличивает скорости медленных твердофазных реакций. [c.48]


    ЛОМ 45° К соответствуюш ей оси кубической ячейки). Сжатие вдоль оси с приведет к структуре белого олова. В структуре алмаза шесть валентных углов у каждого атома равны между собой (109,5°). В белом олове два из этих углов, обозначенные на рис. 3.36 как 6,, увеличены до 149,5°, а другие четыре угла 02 уменьшены до 94°. При этом ближайшее окружение атома меняется вместо 4 соседей иа расстоянии 2,80 А п 12 на расстоянии 4,59А — 4 соседа на расстоянии 3,02 А, 2 на расстоянии 3,18 А и 4 на расстоянии 3,77 А таким образом, с учетом двух атомов на расстоянии 3,18 А в белом олове получается шесть соседей на приблизительно одинаковых расстояниях, образующих искаженную октаэдрическую группировку. Это структурное превращение примечательно не только тем, что на 26% увеличивается плотность (от 5,75 до 7,31 г/см"), но также тем, что белое олово — это высокотемпературная форма. Обычно же высокотемпературная полиморфная модификация имеет меньшую плотность, чем модификация, стабильная прн низкой температуре. Это аномальное поведение обусловлено изменением электронного состояния серая форма состоит из атомов 5п(1У), а белая — из атомов 5п(П). (При растворении белого [c.150]

    Полиморфные превращения относятся к твердофазовым процессам, контролируемым процессом диффузии. При повышении температуры подвижность атомов в структуре возрастает и, следовательно, скорость полиморфного превращения увеличивается. При охлаждении, наоборот, она уменьшается. При температурах значительно ниже температуры превращения скорость полиморфного перехода может стать настолько малой, что более высокотемпературную форму за счет резкого охлаждения (закалки) можно зафиксировать (стабилизировать) в области стабильного существования низкотемпературной формы в метастабильном состоянии (так называемая термическая стабилизация). Вероятность фиксации полиморфной формы в метастабильном состоянии зависит не только от скорости охлаждения (вероятность, естественно, возрастает с увеличением скорости охлаждения), но и от характера и механизма структурных превращений при полиморфном переходе. Реконструктивные превращения, процессы позиционного упорядочения и превращения, связанные с изменением типа химической связи, происходящие с малой скоростью, обычно сравнительно легко предотвращаются закалкой, в то же время быстротекущие поли- [c.59]

    При нагревании без доступа воздуха любые твердые топлива претерпевают примерно одни и те же изменения. Для молодых топлив с низкой степенью углефикации (торф, бурые угли) наибольшие превращения протекают при температурах ниже 550— 600 °С, поэтому они подвергаются только полукоксованию. Динамика происходящих при этом явлений рассмотрена выше (см. разд. 3.1.2). Каменный уголь направляют на высокотемпературную переработку — коксование. Из-за более низкого содержания кислорода в каменных углях количества продуктов, выделяющиеся из них на начальной стадии процесса, меньше, чем из торфа или бурого угля. Кроме того, отличительной особенностью многих каменных углей является переход их органической массы (ОМУ) в пластическое состояние при 350—450 °С. [c.80]

    Доступным сырьем может стать достаточно дешевая, высокотемпературная, но крупнокристаллическая 2пО с 5уд=2—4 лг /г и < =600— 900 А. Для превращения 2пО в активное состояние необходимо, очевидно, определить условия развития поверхности и одновременного уменьшения степени кристалличности. Развить поверхность муфельной окиси цинка или другого крупнокристаллического цинксодержащего сырья можно обработкой реагентами, способными перевести исходные продукты в соли или комплексные соединения с меньшей степенью кристалличности. Необходимым условием такой обработки является получение при последующем прокаливании 2пО с развитой поверхностью и пониженным по сравнению с исходным размером кристаллов. [c.134]

    Температурные воздействия. Влияние температур на скорость твердофазных превращений, как уже отмечалось выше, существенно зависит от механизма самих превращений. Высокотемпературное состояние сравнительно легко фиксировать путем закалки, если переход в низкотемпературную форму совершается реконст-рукционным изменением решетки, позиционным упорядочением или изменением типа химической связи. Вместе с тем, практически невозможно при нормальном давлении предотвратить закалкой мартенситовые превращения или процессы ориентационного упорядочения. Например, никому не удавалось пока закалить обусловливающую суперионное состояние высокотемпературную фазу солеобразных твердых электролитов, в частности Li2SO4. Известные возможности в этом смысле открывает предложенная сравнительно недавно техника сверхбыстрого (2-10 К/с) охлаждения, основанная на катапультировании микрообъемов расплавов на поверхность быстро вращающегося металлического барабана, охлаждаемую жидким азотом [158]. Применение этого метода к металлическим системам позволило варьированием скорости охлаждения получить набор метастабильных кристаллических модификаций и аморфное состояние сплавов фиксированного состава. [c.155]


    Приведены сведения о выходе, составе и свойствах смол полукоксования в зависимости от природы горючих ископаемых и условий полукоксования. Рассмотрены химический состав высоадтемпературной каменноугольной и сланцевой смол, термические превращения высокотемпературной каменноугольной смолы и ее составляющих. Освещены современное состояние процессов переработки каменноугольной смолы и тенденции их развития. [c.1]

    Наиболее существенные изменения свойств сплавов происходят в результате операций термической обработки, связанных с протеканием фазовых превращений. В ходе этих обработок в большинстве случаев сначала получают крайне неравновесное состояние путем быстрого охлаждения (закалки) сплава, нагретого до высокой температуры, а затем осуществляют контролируемое изменение фазового состава и микроструктуры в изотермических условиях (операции отпуска или старения). В результате закалки или фиксируется высокотемпературное однофазное состояние (твердый раствор, который при низких температурах оказывается пересыщенным), или происходит полиморфное превращение, которое также создает состояние пересыщенного твердого раствора. Примером материалов, в которых закалка просто фиксирует высокотемпературное состояние твердого раствора, являются многочисленные стареющие (или дисперсионнотвердеющие) сплавы на основе А1, Си, N1 и других металлов. Примером второго типа сплавов является сталь и некоторые сплавы на основе Т1. [c.406]

    Физические и химические свойства. В свобо.тном состоянии титан—типичный металл, по внешнему виду напоминающий сталь. В обычных условиях поверхность титана покрыта тонкой оксидной пленкой, лишающей ее зеркального блеска. Кристаллический титан существует в двух полиморфных видоизменениях низкотемпературном— (i и высокотемпературном — р. а-Титан и.меет плот-ноупакованную гексагональную, а р-титан — объемноцентрирован-ную кубическую решетку. Температура полиморфного превращения a-Ti=rip-Ti 882,5°С (АЯ = 3,69 кДж/моль). [c.261]

    Исследованиями зарубежных и отечественных ученых усгановлено, что эксплуатационные свойства углеродных материалов находятся в прямой зависимости от структуры и, в частности, кристаллической структуры нефтяных коксов. При высокотемпературной обработке нефтяных коксов при прокаливании и графитации происходит целый ряд физико-химических превращений, в результате которых несоверщенный по своей структуре кокс перестраивается в кристаллический материал с трехмерно упорядоченной структурой. Особый интерес представляет перестройка тонкой кристаллической структуры, так как многообразие переходных форм углерода, многообразие свойств углеграфитовых материалов определяется сочетанием углерода в различных гибридных состояниях с разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев и степенью их совершенства. [c.117]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    PeaJ изaция высокотемпературных процессов переработки углеводородного сырья и получение качественных требуемых продуктов невозможна без огневого нафева сырья, так как только в данном случае можно достигнуть необходимые температуры. Нагрев продукта осуществляется в трубчатых печах, основным злементом которых является змеевик, воспринимающий основную тепловую нагрузку со стороны продуктов сгорания топлива или непосредственно от факела. При этом змеевик можно отождествлять с реакционным аппаратом, в котором неизбежно протекают процессы крекинга и термического разложения углеводородного сырья. Процессы превращения сырья протекают как в потоке, так и на внутренней поверхности труб змеевика и могут оказывачь разрушающее действие на сам змеевик, что проявляется в существенном снижении на.деж-ности печи. В данной главе рассматриваются различные аспекты высокотемпературного нагрева с позиции накопления повреждений в змеевиках и их напряженно-деформированного состояния. [c.181]

    В центральной части диаграмм (см. рис. 68, 69) имеется область несмешиваемости в жидком состоянии. На диаграммах нанесены также линии полиморфных превращений 2г02. В чистом виде 2гОг существует в трех модификациях кубической (высокотемпературная), тетрагональной и моноклинной (низкотемпературная). При нагревании до 1000—1200 °С начинается переход моноклинной формы в тетрагональную (заканчивается при 1450°). При 2200— [c.119]

    Применение в цементировании находят как обычные портланд-цементные растворы из цемента для холодных (ХЦ), горячих (ГЦ) и высокотемпературных (ВЦ) скважин, так и растворы на основе шлака, белито-кремнеземистого цемента, известково-песчаных смесей, пластмасс и полимеров, природных минералов, горных пород [45—53]. Разрабатываются новые виды цементов [53] в США [54, 145] при цементировании скважин в зоне вечной мерзлоты начали использоваться высокоалюминатные цементы ( iment Fondu). Несмотря на все разнообразие вяжущих веществ, служащих основой для получения тампонажных дисперсий, процесс превращения их из вязко-пластичного в камневидное состояние всегда включает образование специфических аквакомплексов — гидратных [c.31]

    Высокотемпературное форсированное ядро факела должно воздействовать на такие процессы, как генерация окислов азота, серного ангидрида, а также на состояние минеральной части топлива, приводящее к изменению ее шлаковочных свойств. В горячем ядре азотсодержащие соединения топлива разлагаются до простейших термодинамически равновесных соединений, что, в свою очередь, должно устранить их прямое превращение в окислы азота и снизить содержание последних в дымовых газах. Понятие ядра горения условно, так как в отдельных объемах газа, даже в пределах ядра, горение заканчивается с опережением, и наоборот. [c.128]

    Обычно данные ДТА используют в сочетании с результатами термогравиметрич., масс-спектрометрич. и дилатометрич. исследований (см. Дериватография). Это позволяет, напр., делать выводы об обратимости фазовых превращений, изучать явления переохлаждения, образование метастабильных фаз (в т. ч. короткоживущих). Мат. соотношения между площадью пика на кривой ДТА и параметрами прибора и образца позволяют определять теплоту превращения, энергию активации фазового перехода, нек-рые кииетич. константы, проводить полуколичеств. анализ смесей (если известны ДЯ соответствующих р-ций). С помощью ДТА изучают разложение карбоксилатов металлов, разл. металлоорг. соединений, оксидных высокотемпературных сверхпроводников. Этим методом определили температурную область конверсии СО в Oj (при дожигании автомобильных выхлопных газов, выбросов нз труб ТЭЦ и т.д.). ДТА применяют для построения фазовых диаграмм состояния систем с разл. числом компонентов (физ.-хим. анализ), для качеств, оценки образцов, напр, при сравнении разных партий сырья. [c.533]

    Частицы аэрозолей серы и селена могут осаждаться в виде шариков в переохлажденном состоянии, затем в нескольких цен трах может начаться кристаллизация, и эти кристаллы растут за счет изотермической перегонки из переохлажденных частиц Многое зависит от размера исходных частиц и плотности осадка Если эти параметры превышают некоторую критическую величину, про исходит рост крупных капель за счет более мелких, тогда как при низких концентрациях и размерах растут кристаллы Это различие связано с градиентом концентрации пара, по мнению Кольшют гера такие же изменения происходят и во взвешенных частицах Многочисленные данные по конденсации, росту и испарению жидких и твердых частиц аэрозолей галогенидов щелочных и более тяжелых металлов были опубликованы Бакпом Мелкие капельки расплавов этих солей получались путем конденсации перегретого пара Для изучения фазовых превращений в частицах была использована высокотемпературная обтачная камера Методика исследования сводилась к тому, что отмечалось начало мер цания освещенных сбоку частиц, изменение в устойчивости аэро золя и перемены в форме осевших частиц [c.73]

    Анализируя экспериментальные данные, полученные им в разные годы [315,318, 319], А. Мюллер предположил, что в высокотемпературной гексагональной фазе, называемой ротационной (rotator), молекулы находятся в состоянии вращения (rotation) вокруг своих длинных осей [316]. Несмотря на скрупулезно выполненные исследования, А. Мюллер [316] не смог изучить все особенности изменения дифракционной картины н-парафинов в зависимости от температуры. Он фиксировал переход только в высокотемпературное гексагональное ротационно-кристаллическое состояние, пропуская, по крайней мере, еще одно превращение — переход в низкотемпературное ротационно-кристаллическое состояние. Вероятные причины этого — две ограниченные возможности дебаевского фотометода и недостаточно дробный шаг исследования по температуре (вторая причина обсуждается в разделе 3.2). [c.60]

    Естественным завершением твердофазовых преобразований является достижение молекулами свободного вращения. Можно полагать, что для индивидуальных нормальных парафиновых гомологов это происходит при темперагуре при которой вьшолняет-ся равенство aoJ -у/з bor=Ofj, то есть структура становится гексагональной. Это полиморфное превращение заключается в обратимом переходе из низкотемпературного ромбического ротационно-кристаллического состояния mt.l в высокотемпературное гексагональное ротационно-кристаллическое состояние rot.2. При этом низкотемпературная ромбическая ротационно-кристалли-ческая модификация Ог ц преобразуется в высокотемпературную гексагональную ротационно-кристаллическую модификагщю Я , 2-Свободное вращение как форма теплового движения частиц описывается динамической моделью ротационно-кристаллического состояния вещества [79, 82, 149,239]. [c.132]

    Выявление третьего, промежуточного типа ротационно-кристаллического состояния вещества (rot. 1+2) оказалось принципиально важным. Дело в том, что в случае ромбическо-гексагонального полиморфного превращения парафинов оставалось неясным, при какой температуре молекулы вступают в режим свободного вращения, поскольку это превращение (Ог- Н) не обязательно должно совпадать по температуре с переходом парафина из низкотемпературного ротационно-кристаллического состояния в высокотемпературное (rot.l- rot.2) [79,148]. Обнаружение особых точек на линиях зависимости <аемпература-параметр решетки ромбического твердого ра- [c.165]

    Вьщеление различных типов ротационно-кристаллического состояния вещества (низкотемпературного, высокотемпературного и промежуточного) оказалось возможным благодаря тому, что каждое из этих состояний проявилось у парафинов индивидуально в особенностях их термических деформаций, полиморфньгх превращений и изоморфных замещений. В свою очередь эти же особенности явились аргументами в пользу динамической модели строения ротационных кристаллов — в чистом виде или в ее различньгх комбинациях со статической моделью. [c.181]

    Термические деформации и полиморфные превращения. Поскольку мягкий парафин при комнатной температуре существует в высокотемпературном ротационно-кристаллическом состоянии (фаза Я ( 2), его исследование было начато при температуре 5 °С. При этой температуре мягкий парафин существует в кристаллическом состоянии. Оба нефтяных парафина испытывают фазовые превращения, характерные для бинарных твердых растворов (см., например, рис. 33) и для поликомпонентных твердых растворов, в состав которых входят сравнительно короткоцепочечные гомологи и распределение которых по номерам п близко к симметричному (см., например, рис. 67). Однаш превращения мягшго парафина оказываются существенно более низкотемпературными по сравнению с соответствующими превращениями твердого парафина. [c.299]

    Минимальная продолжительность процесса сшивания до достижения оптимальной густоты пространственной сетки, определяемая различными способами, в значительной мере отличается от времени практического проведения технологического процесса вулканизации. Чем массивнее изделие, тем больше разница между технологическим и, к примеру, реометрическим оптимумами вулканизации, и эта разница достигает 5-6-кратной величины реометрического оптимума вулканизации. Предварительный вывод об изменении свойств вулканизованных резин чаще всего делается по наличию или отсутствию реверсии на реометрических кривых на его основе и вносятся соответствующие изменения в рецептуру. Между тем сегодняшние представления об эластомерах позволяют рассматривать вулканизацию как сложный физико-химический процесс, включающий целую гамму структурных превращений, происходящих в эластомерах при высокотемпературном воздействии. При этом протекающие химические и физические процессы оказывают взаимное влияние, а завершающая стадия формирования сетки поперечных химических связей достаточно стабильно фиксирует возникшее состояние. [c.503]

    В зависимости от характера возбуждения в системе можно создать различные типы частиц и их концентрации. Например, если вещество подвергнуть действию элементарных частиц пли перевести его в состояние высокотемпературной плазмы, то в системе возможны лдерно-химнческие превращения. В радиационной химии энергия веществу поставляется, как и в предыдущем случае, быстрыми элементарными частицами. Но основные эффекты связаны с изменениям,и в наружных электронных оболочках атомов. В плазмохимии быстрые электроны и ионы возникают за счет электрического или электромагнитного поля, В фотохимических процессах энергия вносится потоком фотонов с энергией от 2 до 20 эВ. Трудно провести границу между обычной химией п [c.90]

    С полиморфным превращением вещества, на основе которого образуется твердый раствор, всегда связано и превращение самого твердого раствора. На рис. 3.1,к,л приведены диаграммы состояния с наиболее часто встречающимися вариантами такого превращения При эвтекто-идном превращении (рис 3.1,к) температура трехфазного равновесия (эвтектоидная точка Е , где твердые растворы аир, образутощиеся на основе двух модификаций компонента А, взаимодействутот с твердым раствором у, на основе компонента В) расположена ниже температуры (Тп) - полиморфного превращения, а область гомогенного твердого раствора на основе низкотемпературной модификации (Р) более узкая, чем на основе высокотемпературной модификации (а) при перитектоидном превращении (рис 3 1, л) - наоборот. [c.36]

    Превращения, связанные с разупорядочением (изменением степени упорядоченности) структуры. Эти превращения могут быть разделены на быстро протекающие ориентационные и медленно протекающие позиционные превращения. При первых превращениях разупорядочение является следствием изменения ориентации (например, путем вращения) отдельных атомных групп. Подобные превращения происходят в шпинелях, содержащих катионы переходных металлов (например, Мп +, Си +) с асимметричным анионным окружением, переход материала из ферромагнитного в парамагнитное состояние за счет ориентации атомных магнитных моментов и т. д. К ориентационным превращениям типа порядок — беспорядок можно отнести переход между высокотемпературной а н-формой 2 a0-Si02 и низкотемпературной a i-формой этого соединения, структуры которых настолько близки, что достаточно очень небольшого смещения атомов в структуре, чтобы вызвать указанное превращение. При позиционном изменении степени упорядоченности происходит перераспределение атомов между узлами кристаллической решетки, что связано с диффузией атомов. Подобного рода медленные превращения приводят к образованию так называемых сверхструктур, обусловливающих появление дополнительных дифракционных отражений на рентгенограммах веществ. Для шпинелей, например, имеющих два типа катионных узлов (октаэдрические и тетраэдрические позиции в плотноупакованной кислородной решетке), подобные переходы особенно характерны и происходят за счет перераспределения катионов по этим позициям. Такого же рода переходы наблюдаются в оливинах, пироксенах, полевых шпатах. Например, в калиевом полевом шпате К20- А Оз-бЗЮг, образующим три полиморфные модификации две моноклинные — санидин и адуляр, объединяемые часто под общим названием ортоклаз, и одну триклинную — микроклин, обнаружено значительное различие в степени упорядоченности атомов Si и А1 по тетраэдрическим позициям структуры. В высокотемпературном ортоклазе имеется лишь частичная упорядоченность, а при понижении температуры за счет перераспределения атомов достигается [c.55]

    Другой прием исследования быстрых обратимых превращений — так называемый релаксационный метод, или метод вынуж-ных отклонений (возмущений). Сущность этого метода заключается в целенаправленном выводе системы из состояния равновесия и наблюдения за ее возвращением в это состояние. При наличии какого-либо свойства, пропорционального скорости возвращения к равновесию (релаксации), можно оценить и скорость превращения, без вмешательства в химический состав системы. Вблизи от состояния равновесия скорость обратимого превращения минимальна, и, следовательно, наиболее удобно для измерения. Интересным примером релаксационного метода является так называемый метод температурного скачка, позволивший определить кинетические параметры дегидратации метиленгликоля в широком диапазоне температуры. Быстро меняя температуру водного раствора формальдегида, авторы работы [23] непрерывно фиксировали изменения УФ-спектра раствора, для чего образец нагревали или охлаждали непосредственно в кювете регистрирующего спектрофотометра СФ-4А. При обработке результатов делалось вполне обоснованное допущение, что изменение оптической плотности разбавленного раствора при изменении температуры однозначно определяется содержанием негидратирован-ного мономера формальдегида. На экспериментальной установке (рис. 30) высокотемпературная кварцевая спектрофотометрическая кювета 1 освещается водородной лампой 2 со шторкой 3. Через уплотнительную головку кюветы выведены концы термопары 4. Кювета снабжена двухсекционным нагревательным элементом 5. Сигнал термопары поступает на самописец 6, оборудованный автотарировочным устройством. Пройдя кювету, свет направляется на светофильтр 7, фотоэлектроусилитель 8 и, далее, на эмиттерный повторитель 9 и самописец 10, служащий для записи кинетических данных. Система нагрева 11 обеспечивает медленное повышение температуры раствора в кювете до исходной температуры Г], после достижения которой с помощью переключателя 12 включается вторая, более мощная секция, нагрева- [c.87]

    Силикатообразование и последующее формирование силикат-глыбы являются многостадийными. Эти последовательно и одновременно протекающие высокотемпературные процессы взаимодействия компонентов как в твердом, так и жидком (расплавленном) состоянии включают удаление гигроскопичной влаги (при 110—120 °С) и влаги кристаллогидратной, сформировавшейся, в частности, при увлажнении шихты — при температуре выше 200 °С полиморфные превращения кварца (а = =р-кварц, 575 °С), сульфата натрия (а 5 Р-Ыа2504, 235 °С) термическую диссоциацию карбоната калия (410°С) плавление компонентов шихты (ЫагСОз — при 855 °С) твердофазное образование силикатов натрия и калия (800—900 °С) образование эвтектических расплавов в системах НгО—ЗЮг формирование спеков силикатов щелочных металлов и кварца плавление образовавшихся спеков и растворение кремнезема в щелочно-силикатном расплаве формирование стекломассы (1400 °С) и ее охлаждение. [c.132]

    В практическом отношении нри выборе системы раствор— носитель всегда следует помнить о возможной сильной агрессивности раствора в отношении носителя при очень высоком или очень низком pH. Степень этого воздействия зависит, кроме всего прочего, и от величины поверхности носителя. Опыт показывает, что вещества в активной форме (например, у-АЬОз) намного реакционноспособнее, чем вещества, подвергнутые высокотемпературной обработке и превращенные в кристаллические модификации с низкой поверхностью и с низкой собственной активностью (например, а-А Оз). Уголь относительно инертен, особенно в сильнографитированном состоянии, но окись алюминия с высокой поверхностью и окись хрома чувствительны к воздействию растворов с высоким и низким pH на алюмосиликаты и цеолиты действуют растворы с низкими pH, а на двуокись кремния с высокой поверхностью— растворы с высоким pH. Эта проблема возникает главным образом при выборе pH раствора, применяемого для ионного обмена или пропитки, с тем чтобы стабилизовать желаемый ион металла в растворе в таком случае необходимо поступиться или стабильностью иона, или химической устойчивостью носителя. Едва ли следует подчеркивать, что добавляемые кислоты или основания (или буфер) должны образовывать летучие соединения, так как это позволяет избежать загрязнения катализатора. Тем не менее, когда кислоты или основания применяют в отсутствие буфера и начальное pH соответствует значениям, при которых носитель не взаимодействует-с ними, полностью устранить возможность агрессивного воздействия на носитель все же трудно, так как концентрация кислоты или основания может возрастать в процессе сушки. Даже если в раствор, применяемый для пропитки или обмена, не добавляют кислот или основ.аний, способность носителя взаимодействовать с ними может оказаться важной. Например, обладающий основными свойствами носитель увеличивает степень гидролиза растворенного вещества, если гидролиз сопровождается образованием кислоты. [c.185]


Смотреть страницы где упоминается термин Превращение в высокотемпературное состояние: [c.212]    [c.175]    [c.273]    [c.516]    [c.183]    [c.151]    [c.264]    [c.150]    [c.257]    [c.300]    [c.335]    [c.78]    [c.257]    [c.65]    [c.237]    [c.238]   
Физическая химия силикатов (1962) -- [ c.317 ]




ПОИСК







© 2025 chem21.info Реклама на сайте