Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эндотермические реакции эффект

    При повышении температуры системы, в которой возможна химическая реакция (системе, находящейся в равновесии, сообщается теплота), согласно принципу Ле Шателье — Брауна усиливается процесс, сопровождающийся поглощением теплоты, т. е. равновесие смещается в сторону эндотермической реакции. Влияние температуры будет сказываться на константе равновесия химической реакции тем сильнее, чем больше по абсолютной величине тепловой эффект. Поэтому при протекании двух параллельных реакций, например [c.256]


    При исследовании кинетики реакций весьма важен вопрос о выборе контролируемого параметра. В простых газо-жидкостных процессах, в которых хорошо изучены направления химических превращений (например, реакции гидрирования непредельных соединений или восстановления нитросоединений водородом), контролируемым параметром может служить давление. Процесс в этом случав проводят статически в изохорических условиях, а скорости реакций измеряют по скорости изменения давления в системе. Математическая обработка полученных результатов достаточно проста. Для сравнительно простых реакций можно применять адиабатический метод исследования кинетики [4—6], когда контролируемым параметром является только температура. Метод основан на определении скорости разогрева (охлаждения) адиабатического реактора и применим для сильно экзотермических (или эндотермических) реакций. Для его использования нужно знать тепловые эффекты реакций и теплоемкости реагентов и продуктов. Надо, однако, иметь в виду, что при применении чисто адиабатического метода всегда есть опасность непредвиденного изменения направления реакции по мере повышения температуры, что сразу затрудняет расшифровку полученных данных. Гораздо большую перспективу имеет применение для исследования каталитических процессов метода неизотермического эксперимента, где наряду с анализом веществ производится замер профиля температуры по длине слоя катализатора или по ходу опыта. [c.403]

    Тепловым эффектом химической реакции (Q) называется количество теплоты, которое выделяется или поглощается при ее протекании. Тепловой эффект эндотермической реакции, т. е. реакции, протекающей с поглощением теплоты будет положительным, а тепло- [c.20]

    Тепловым эффектом химической реакции Q называется количество теплоты, которое выделяется или поглощается при необратимом протекании реакции. При этом тепловой эффект эндотермической реакции будем считать положительным, а тепловой эффект экзотермической реакции отрицательным. [c.9]

    По тепловому эффекту различают реакции эндотермические, идущие с поглощением тепла, и экзотермические, протекающие с выделением тепла. Так, реакции крекинга, пиролиза, каталитического риформинга являются эндотермическими, а гидрогенизации, алкилирования, полимеризации и др. — экзотермическими. Это требует и соответствующего конструктивного оформления аппарата, чтобы обеспечить подвод тепла в случае эндотермической реакции и отвод тепла в случае экзотермической реакции. [c.372]


    ДЯ,—тепловой эффект реакции (отрицателен для экзотермической и положителен для эндотермической реакций). [c.17]

    Газ (гомогенное) включая каталитические процессы Динамическая (непрерывная) То же Здесь часто одновременно протекают экзотермические и эндотермические реакции, однако общий тепловой эффект соответствует экзотермическому процессу Неполное сожжение метана для получения ацетилена 6СН, -Ь Ю,- СгН -f -Ь 8На -Н- ЗСО СОг ЗН О Печи Состав продуктов реакции зависит от соотношения реагентов, гидродинамических характеристик процесса и т. Д- [c.32]

    Необходимо ПОМНИТЬ, что отдельные составляющие баланса суммируются алгебраически. Например, при эндотермической реакции теплоту химического превращения (тепловой эффект) нужно брать с отрицательным знаком. Отрицательной считается также теплота, переданная через стенки реактора, когда она подводится с внешней их стороны к реакционному пространству. Следовательно, включение этих двух членов уравнения в приход или расход общей схемы баланса условно. [c.293]

    Таким образом, самопроизвольно протекающие эндотермические реакции п химическая обратимость многих процессов — это факты, свидетельствующие о том, что в общем случае тепловой эффект реакции ие является мерой химического сродства. [c.188]

    Условились знак плюс приписывать изменению энтальпии в эндотермических реакциях и знак минус — в экзотермических реакциях. Изменения AU и АН не зависят от пути протекания процесса, Qv и Qp также не зависят от пути протекания химического процесса, а зависят только от начального и конечного состояния веществ. Теплоты реакций зависят от физического состояния веществ и от условий проведения реакции. Для удобства сравнения теплот образования веществ и тепловых эффектов реакций было введено понятие стандартного состояния — это состояние вещества при давлении 1 атм (0,1013 МПа). Тем- [c.64]

    Часто химические реакции сопровождаются экзотермическим пли эндотермическим тепловым эффектом. Если реакция должна протекать изотермически, то необходимо определенное количество тепла либо подвести к реактору, либо отвести от него. [c.46]

    Влияние сегрегации. Сравнение состояния сегрегации с уровнем молекулярного смешения для эндотермических реакций показывает, что наивысшая степень превраш,ения достигается при сегрегированном состоянии реакций всех порядков. Разница между этим результатом и результатом, рассмотренным при изотермических условиях, для которых существен порядок реакции, обязана характеру изменения скорости процесса. В эндотермической системе скорость уменьшается с увеличением степени превращения вследствие расходования реагентов и уменьшения температуры системы. Для описанных выше систем температурный эффект был большим, чем компенсация, обусловленная порядком реакции. [c.113]

    В предыдущем примере для эндотермической реакции было показано, что температура реакции проходит через минимум. Аналогично в случае экзотермических реакций температура в охлаждаемом трубчатом реакторе проходит через максимум. На рис. 1У-6 показано, что в зависимости от теплового эффекта и возможностей теплопередачи значение максимальной температуры может находиться между Го и То + Адиабатический температурный разогрев реакционной смеси при полном превращении выводится из уравнения (IV,16)  [c.126]

    Тепловые эффекты указанных реакций различаются по величине и знаку. В большинстве случаев реакции эндотермичны, но некоторые (перераспределение водорода, полимеризация, циклизация, конденсация и т. д.) протекают с экзотермическим эффектом. Интенсивность протекания тех или других реакций определяет результирующий эндотермический тепловой эффект крекинга, который может изменяться от 100 до 400 кДж/кг сырья. [c.106]

    Для эндотермической реакции точка пересечения лежит ниже, а для экзотермических выше оси абсцисс. Минимальная энергия активации отвечает точке пересечения и равна половине отрицательного теплового эффекта реакции. Минимум энергии активации, а следовательно, -и максимум скорости реакции отвечают оптимальному значению [c.84]

    При этом тепловой эффект эндотермической реакции, т. е. реакции, протекающей с поглощением тепла, в соответствии с общими правилами знаков для переданной теплоты будет положительным а тепловой эффект экзотермической реакции, т. е. реакции, протекающей с выделением тепла, — отрицательным. В дальнейшем изложении тепловой эффект химической реакции при постоянном объеме будет обозначаться Ш и при постоянном давлении — АН. [c.90]

    Глубина процесса риформинга определяется качеством катализата, т.е. октановым числом, которое обычно при работе по бензиновому варианту находится в интервале 85- 100 пунктов (И.М.), или содержанием суммы ароматических углеводородов при работе по ароматическому варианту [40-75% (мае.)]. Глубина риформинга зависит от совокупности многих параметров сырья, катализатора, температуры и продолжительности контактирования сырья е катализатором, давления, кратности циркуляции ВСГ, типа катализатора и т.п. Известно, что из-за большого эндотермического теплового эффекта процесс проводят в каскаде из трех-четырех реакторов с промежуточным подогревом. Поскольку газосырьевая смесь наиболее быстро охлаждается в первом реакторе, где проходят сильно эндотермические реакции дегидрирования нафтенов, время контактирования сырья с катализатором и средняя температура в этом реакторе наименьшие по сравнению с остальными реакторами. В последнем реакторе продолжается конверсия, в том числе в медленных реакциях, особенно дегидроциклизации, в нем находится больше половины общего количества катализатора. Изменение температуры в последнем реакторе незначительно, поскольку там наблюдается экзотермический эффект гидрокрекинга, для которого требуется значительное количество водорода. [c.149]


    Как видно из рис. 4, для эндотермических реакций с увеличением температуры степень превращения и равновесный выход возрастают. Поэтому такие реакции желательно проводить при максимально возможной температуре, которая определяется стойкостью конструкционных материалов, экономическими затратами на достижение высоких температур, разложением исходных веществ и продуктов реакции и другими причинами. Для эндотермических реакций существует экономически рациональная температура, определяемая сопоставлением энергетических затрат и затрат на термостойкие материалы с экономическим эффектом интенсификации процесса вследствие повышения температуры. [c.80]

    Удельные соотношения эндотермических реакций расщепления и экзотермических реакций гидрирования на каждом участке кинетической кривой зависят от химического состава образовавшихся продуктов реакции [121]. При изменении характеризующего фактора сырья от 12,10 до 10,45, т. е. при переходе от парафинистого сырья к сильно ароматизированному, роль гидрирования по сравнению с деструкцией значительно возрастает и тепловой эффект может изменяться от —50 до 200 ккал кг исходного сырья [121]. [c.177]

    Тепловой эффект деструктивного гидрирования суммируется из эндотермических реакций крекинга и экзотермических реакций гидрирования и может колебаться в широких пределах. [c.294]

    Большое практическое значение имеет и теплота разложения — количество тепла, которое необходимо израсходовать для того, чтобы 1 кг угля при нагревании без доступа воздуха превратить в твердый остаток (кокс или полукокс), пары воды и летучие продукты при температуре порядка 1000 °С. Теплота разложения представляет суммарный тепловой эффект экзо- и эндотермических реакций превращения органических и неорганических веществ в ходе коксования, которые входят в состав твердых топлив. [c.199]

    Для рассмотренных реакций возможно также вычисление констант равновесия кинетическим методом. С этой целью можно использовать вычисленные нами значения стерических факторов реакций присоединения Н-атомов и радикалов СНз к молекулам олефинов [68, 96], а энергии активации реакций диссоциации радикалов вычислить по уравнению Н. Н. Семенова [65] для эндотермических реакций, которое дает связь между энергией активации и тепловым эффектом  [c.253]

    Основными факторами, влияющими на количество тепловых эффектов при деструкции, являются содержание кислорода в угле и выход летучих веществ, т. е. термическая стойкость углей, которая зависит от элементного состава и молекулярной структуры их органической массы. В углях с большей термической стойкостью преобладают эндотермические реакции разложения. [c.200]

    Окислительный пиролиз, при котором источником тепла является тепловой эффект сгорания части сырья. В этом методе в одном аппарате совмеш аются экзотермическая реакция горения углеводородов и эндотермическая реакция их пиролиза. [c.253]

    Термотехнологические процессы определяют необходимый тепловой режим в печи и атмосферу в ней. Тенлопотребление для проведения непосредственно эндотермических реакций или тепловыделение при проведении экзотермических реакций в печах определяется только тепловыми эффектами реакций и не зависит от условий теплообмена и от способов получения тепла. [c.5]

    В некоторых случаях небольшое изменение температуры в адиабатическом реакторе достигается подачей вместе с сырьем инертного (не участвующего в реакции) вещества (теплоагента), которое поглощает (при экзотермической реакции) или компенсирует (при эндотермической реакции) часть теплового эффекта реакции. Примером адиабатического реактора [c.631]

    Тепловой эффект процесса зависит от удельного веса в нем эндотермических реакций ароматизации (АЯг) и, следовательно, от содержания в сырье нафтенов, и экзотермических реакций гидрокрекинга (АН2). Соотношение это таково, что суммарный тепловой эффект риформинга АН = АН1 - АН2 < О. Риформинг на платиновом катализаторе (платформинг) характеризуется следуюш ими параметрами процесса  [c.145]

    Тепловые эффекты можно включать в уравнения реакций. Химические уравнения, в которых указано количество выделяющейся или поглощаемой теплоты, называются термохимическими уравнениями. Величигга теплового эффекта указывается обычно в правой части уравнения со знаком плюс в случае экзотермической реакции и со знаком минус в случае эндотермической реакции. Панример, термокнмическое уравнение реакции [c.167]

    Константы равновесия реакций замещения радикалов можно вычислить по кинетическим данным, используя найденные нами значения. стерических факторов для этих реакций (см. табл. 37) и известные в литературе величины энергий активации некоторых из интересующих реакций. Кроме того, располагая величинами тепловых эффектов реакций, можно вычислить энергии активации эндотермических реакций по уравнению (157) или аналогичному уравнению для экзотермических реакций [65]  [c.256]

    Остановимся теперь на результатах экспериментального исследования реакций распада алкильных радикалов, обратных реакциям присоединения Н по кратной связи [260, 261]. Параметры Аррениуса для реакций распада радикалов, полученные различными экспериментальными методами, приведены в табл. 18.1. Расчет тепловых эффектов АЯ эндотермических реакций (18.1), который легко вы- [c.165]

    При энергии активации экзотермического направления реакции Е О эршргия активации обратной (эндотермической) реакции Е — Е Q, где Q — тепловой эффект реакции. Энергию активации экзотермического направления реакции иногда называют истинной энергией активации. [c.12]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Общими для всех установок риформинга являются большой эндотермический тепловой эффект, который вынуждает вести процесс в трех-четырех реакторах с двумя-тремя промежуточными трубчатйми подогревателями, и разные скорости реакций ароматизации, селективности превращения различных групповых компонентов сырья. [c.156]

    Вступающие в химическую реакцию вещества имеют, таким образом, определенный запас внутренней энергии, как и вещества, получающиеся в результате реакции. Если внутренняя энергия по учающихся веществ меньще внутренней энергии вступающих в реакцию веществ, то выделяется энергия в количестве, равном этой разности, т. е. реакция будет экзотермической. Этот избыток энергии (энергетический эффект) частично идет на нагревание продуктов реакции, частично же излучается в виде квантов тепловой энергии. При эндотермической реакции, наоборот, внутренняя энергия получающихся веществ больше, чем вступающих в реакцию веществ, и в количестве, равном этой разности, необходим (для течения реакции) приток энергии извне. [c.77]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении < 1 ЛШа (приблизительно 0,7 МПа) и температуре 540—580 X. Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    И некоторых случаях небольшое изменение температуры в адиабатическом реакторе достигается подачей вместе с сырьем инертного, I O участвующего в реакции вещества (теплоагента), которое поглощает при экзотермической или компенсирует ирп эндотермической реакции часть теплового эффекта реакции. Примером такого реактора является выносная реакционная камера термического кр( -кинга, куда непрерывно поступает исходное сырье, нагретое в трубчатой и( чи до 470—500 . Объем камеры выбирается с таким расчетом, чтобы паровая и кидкая части потока находились в анпарате в зопо высоких температур в течение отрезка времени, необходимого для достигкения требуемой глубины крекинга. Вследствие эндотермического эффекта реакцип крекипга температура в реакционной каморе иоиижаотся. Глубина крекинга может регулироваться как изменением температуры поступающего в реактор продукта, так п да-влепи< м в каморе при изменении давления изменяется объем паровой фазы, а следовательно, и продолжительность нребывапия в зоне реакции. Отлагающийся в камере при крекинге кокс периодически один раз в 1—2 месяца удаляется. [c.619]

    Для дегидрирования бутана в бутилены и бутиленов в бутадиен при темнературе 570—600° и атмосферном давлении используются новерхпостныс реакционные аппараты, в которых эндотермический тепловой эффект реакции компенсируется подводом тепла дымо] ыми газами через поверхность. [c.622]

    В формулах (151) и (152) Кр и Qp—константа равновесия и тепловой эффект обратимой эндотермической реакции, и Св-к—трансляционные и рращательно-колебательные теплоемкости молекул и радикалов, и — химические. постоянные молекул и радикалов и стехиометрические коэффициенты реакции, которые берутся положительными для продуктов реакции. [c.248]

    Уравнение изобары (111, 53), а также уравнения (111, 54) — (111, 56) позволяют предвидеть и оценивать (количественно и качественно) зависимость константы равновесия от температуры. Если Л/У>0, т. е. тепловой эффект реакции положителен (реакция эндотермическая), то температурный коэффициент константы равновесия также положителен d u KpldT>0. Это значит, что с ростом температуры константа равновесия эндотермической реакции всегда увеличивается и равновесие сдвигается вправо. [c.142]


Смотреть страницы где упоминается термин Эндотермические реакции эффект: [c.54]    [c.216]    [c.376]    [c.158]    [c.97]    [c.70]    [c.81]    [c.11]    [c.343]    [c.115]    [c.101]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции эндотермические



© 2025 chem21.info Реклама на сайте