Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий арсенид

    I Исходя из указанных выше представлений о взаимодействии микрокомпонента с коллектором, обладающим противоположными свойствами, мы разработали ряд методов химико-спектрального определения примесей в алюминии, арсениде галлия, фосфидах индия, таллия, в горных породах [14—16]. [c.239]

    Широкое применение в активационном анализе нашли хроматографические методы выделения и очистки марганца [539, 1220], например прп анализе арсенида галлия [175], жидких включений в рудах [916], сурьмы [13], фосфата натрия [981], алюминия [1167], циркония [1087], стали [1059], кремния и его соединений [255, 256, 1001[, биологических объектов [823, 1185], почв [1545], геологических материалов, метеоритов [1386]. [c.91]


    Радиоактивационным методом определяют магний в чугуне [652], алюминии [1097], цирконии, железе, меди [704], в горных породах [1282], в арсениде галлия [754], в биологических материалах [1024, 1152—1154], в воде [1160]. [c.166]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ТИТАНА, КРЕМНИЯ, СВИНЦА, МЕДИ, МАГНИЯ И МАРГАНЦА В АРСЕНИДЕ ГАЛЛИЯ i [c.161]

    Большой интерес в последнее время вызвали сведения о получении новых металлов, которые сохраняются при атмосферном давлении в течение некоторого времени (особенно при низких температурах), хотя они термодинамически устойчивы (в большей своей части) только при высоких давлениях. Эти новые металлы были названы металлическими алмазами [85]. Речь идет об элементах и соединениях, обладающих в среднем четырьмя валентными электронами на один атом и способных при высоких давлениях претерпевать превращение из модификации с алмазной решеткой в более плотную металлическую модификацию с более высоким координационным числом. К числу таких новых металлов относятся металлические фазы всех элементов IV группы, а также нитрид бора, фосфид алюминия, арсенид галлия, антимонид индия и многие другие соединения в своих металлических модификациях— число их, по утверждению Дарнелла и Либби [85], составляет многие тысячи (см. также стр. 96). [c.90]

    Арсенид алюминия. Арсенид (мышьяковистый) алюминия представляет собой трудно синтезируемое соединение. Для получения этого вещества рассчитанные количества алюминия и мышьяка помещают в графитовый тигель, предварительно прокаленный в вакууме до 2000°С. Тигель с содержимым помещают в кварцевую ампулу, откачивают до мм рт.ст.и затемзапаивают. Для предохранения от возможного взрыва ампулы ее заключают в металлический [c.136]

    Оксид А 2О3 в различных его видах находит применение как огнеупорный и абразивный материал, а синтетические монокристаллы оксида служат рабочим телом лазеров, опорным камнем для точных и часовых механизмов, ювелирных изделий. Кроме того, оксид алюминия является главной составной частью алюминиево-титановых керметов (А120 ,—Т1А1,. 412О3—Т1). Алюмогель применяется как адсорбент для осушки газов, очистки воды, осветления растворов в сахарном производстве. Гидрид алюминия нашел применение как компонент твердого ракетного топлива, восстановитель в органическом синтезе. Фосфид, арсенид и антимонид алюминия находят прнме 1е-ние в полупроводниковой технике для изготовления солнечных батарей и лазеров. [c.156]


    Рассмотрим использование периодического закона в методе сравнительного расчета температур плавления полупроводниковых соединений типа А В (А — атом элемента I11A подгруппы и В — атом элемента VA подгруппы). На рис. 21 показана зависимость температуры плавления фосфидов, арсенидов и антимонидов алюминия, галлия и индия в зависимости от порядковых номеров этих металлов. Все перечисленные вещества кристаллизуются по типу сфалерита ZnS (см. гл. IV). [c.83]

    Когда образуется твердый раствор на базе химического соединения, например арсенида галлия, атомы магния или кадмия замещают атомы галлия, но не мышьяка атомы фосфора, селена и теллура,наоборот, замещают атомы мышьяка, но не галлия. Возможность такого замещения сильно зависит от типа связи, от размеров и ЭО атомов заместителей и замещаемых. В решетках соединений типа А" Б связи между атомами ковалентные полярные, и неметаллические атомы замещают атомы В, а металлические атомы замещают атомы А. В этих решетках атомы А не замещаются атомами В и наоборот однако в решетках с металлическими связями между атомами подобные замещения возможны. Например, в, интерметаллическом соединении Al o возможно частичное замещение атомов алюминия (г = 1,43 А) атомами кобальта (г — 1,25 А) и наоборот. В результате образуются твердые растворы на базе этого соединения состава Ali t oi ) или [c.144]

    В технике широко применяются арсенид, в меньшей степени фосфид и антимонид галлия, а также твердые растворы арсенида с фосфидом галлия или этих галлиевых соединений с аналогичными соединениями алюминия и индия. Они используются для изготовления разнообразных полупроводниковых устройств — выпрямителей, транзисторов, детекторов ядерного излучения, приборов, использующих эффект Холла, и т. п., а также лазеров [80], Сейчас широко начинают применяться люминесцентные источники света в виде полупроводниковых диодов. Отличаясь малой инерционностью, они легко сочетаются с другими элементами электронных схем. На этой основе развивается новое направление электроники — оптикоэлектроника. С помощью фосфида галлия получают источники зеленого и желто-зеленого светов твердые растворы фосфида с арсенидом дают свечение от желтого до красного. Арсенид и антимонид галлия дают инфракрасное излучение 0,85—0,90 и 1,6 мкм соответственно. На основе арсенида галлия и других материалов этой подгруппы работают лазеры как для видимой, так и для инфракрасной областей спектра. Из других полупроводниковых соединений галлия начинает входить в практику селенид GaSe [80]. [c.245]

    Если по оси ординат откладывать температуру плавления, например, арсенидов, а по оси абсцисс — температуру плавления стибидов, то точки пересечения координат оказываются на прямой рис. 22. Полагая, по аналогии, что и в других подобных случаях тоже должны получаться прямые линии, можно экстраполяцией оцепить температуру плавления фосфида алюминия, оказавшуюся равной примерно 1750° С. Это абсцисса точки, отмеченной на рис. 22 светлым кружком. Она определяется пе-ресечение.м линии, связывающей температуры плавления арсенидов и фосфидов галлия и индия, с горизонтальной линией, проведенной на уровне температуры плавлення AlAs (1600°С). [c.104]

    В качестве управляемых Д. используют сегнетоэлектрики (титанат бария, ниобат лития, сегнетокерамика и др ). В микроэлектоонных устройствах на полупроводниках, в частности больших и сверхбольших интегральных схемах на кремнии и арсениде галлия, используются в качестве как пассивных, так и активных элементов тонкие (0,002-2,0 мкм) аморфные диэлектрич. пленки ЗгОз, SIзN4, бор- и фосфорсиликатных стекол. Перспективными являются диэлектрич. пленки оксида алюминия, нитридов бора и галлия. [c.109]

    Твердые растворы на основе соединений А В . В табл. VI.1 (стр. 145) приведены 6 типов твердых растворов на основе фосфидов алюминия, галлия п индия, а также арсенидов алюминия и галлия. В настоящее время достигнуты значительные успехи в разработке светодиодов на основе GaASj. Рх самого дешевого материала для светодиодов, так как он легко получается методом газофазной эпитаксии на подложках из арсенида галлия, который, в свою очередь, является наиболее качественным и доступным материалом. Промышленный выпуск светодиодов освоен в большом масштабе. [c.149]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]


    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    Методы ионообменной хроматографии используют для нейтронно-активационного анализа чистых веществ — алюминия [224, с. 277], двуокиси кремния и кварца [176], циркония [53], биологических образцов [136, с. 319, 321 224, с. 278], химико-спектральном анализе галлия и арсенида галлия [454], сурьмы [540], непту- [c.141]

    После обогащения, в зависимости от химической формы, в которой находится металлический элемент, следуют либо процессы обжига - перевода сульфидов, арсенидов, карбонатов в оксиды, либо (для оксидов) - непосредственно восстановление. В зависимости от свойств металла и требований к чистоте конечного продукта восстановление осуществляется либо нагреванием с углеродом (углем, сажей), водородом, алюминием или магнием - это пироме-таллургические процессы, либо в растворе электрическим током [c.477]

    В работе [125] были подвергнуты анализу моносилан, полученный при реакции диспропорционироваиия триэтоксисилаиа в присутствии металлического натрия моногерман, полученный при реакции между тетрахлоридом германия и борогидридом иатрии диборан, полученный путем восстановления треххлористого бора водородом арсин, фосфин, сероводород и селеповодород, полученные путем разложения разбавленной соляной кислотой арсенидов, фосфидов, селенидов цинка, магния и алюминия. [c.195]

    Имеются сведения, что кислородсодержащие сое-динения получаются -при пропускании смеси метана с водяным паром вместе с углекислотой, в-одо-родом или кислородом над металлическими катализато-рам-и при 200—500° при давлениях 500 аг и -выше з . Получаемые таким образом -продукты окисления, которые м-ожно варьировать соответственно п-рим-еняемой газовой смеси, предста-вляют собой спирты, альдегиды, кетоны и кислоты. Среди катализаторов, которые могут быть использованы, находятся цинк, магний, кальций, алюминий, хром, марганец, ванадий, молибден, титан, железо, кобальт, никель и элементы редких земель или соединения этих металлов, -например их сульфиды, арсениды, фосфаты, силикаты или бораты. Катализатор может также содержать различные хроматы, вольфраматы- или молибдаты. Аппаратура может быть ме-дная или п-окрыта медью или -построена -из стали, содер-жащей ванадий, марга1не-ц, никель или кобальт. [c.903]

    Арсенид галлия (ОаАз) Антимонид галлия (ОаВЬ) Антимонид алюминия (А13Ь) [c.9]

    Соответствующие методики анализа описаны для алюминия [1030], антимонида алюминия [876], циркония [1148] и урана [1010]. Комплексообразование в среде 0,1 н. раствора НС1 использовали для отделения примесей от основной массы селена [779]. Мышьяк при растворении в азотной кислоте переходит в анион АзО и не сорбируется катионитом из 0,1 н. раствора НМОз, в то время как поглощение примесей микронавеской смолы происходит количественно [349]. Анализ арсенида галлия проводят в два этапа с экстракционным удалением Оа и ионообменным отделением примесей от мышьяковой кислоты [348]. Чтобы избежать ступенчатой схемы обогащения, сорбцию примесей проводят катионитом из щелочной (pH 11) среды, в которой оба основных элемента (мышьяк и галлий) образуют анионные формы. Примеси Сё, Со, Си, N1 и 2п связываются этилендиамином в растворимые катионные комплексы, сорбируемые Ма-формой катионита КБ-4п-2 [602]. [c.302]


Смотреть страницы где упоминается термин Алюминий арсенид: [c.266]    [c.28]    [c.28]    [c.273]    [c.7]    [c.23]    [c.23]    [c.29]    [c.200]    [c.459]    [c.4]    [c.104]    [c.204]    [c.150]    [c.909]    [c.1054]    [c.253]    [c.643]    [c.230]    [c.282]    [c.390]    [c.126]    [c.157]   
Основы общей химии Том 2 (1967) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Арсениды



© 2025 chem21.info Реклама на сайте