Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральные свойства органических молекул с Г — Г-поглощением

    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]


    Все органические молекулы, в том числе и молекулы асфальтенов, обладают общим свойством — поглощать электромагнитное излучение. Поглощение весьма селективно, т. е. излучение определенной длины волны данной молекулой сильно поглощается тогда как излучение других длин волн поглощается слабо или совсем не поглощается. Область поглощения называется полосой, а совокупность полос поглощения данной молекулы является характеристичной для этой молекулы и не может быть продублирована никакой другой молекулой, даже весьма близкого строения. Однако в молекулах органических соединений, особенно сильно выраженной ароматической природы, бывают случаи когда способностью поглощать электромагнитную энергию обладает не вся молекула, а только определенная группа атомов, входящих в ее состав в то время как остальная часть молекулы остается инертной в отношении этого излучения. Важно подчеркнуть, что характер поглощения этой группой атомов не изменяется существенно даже при структурном видоизменении всей молекулы. Это дает возможность определять некоторые структурные элементы в молекулах просто сравнением их спектра со спектрами молекул известного строения. Поэтому для успешного решения молекулярно-структурных проблем с помощью электронных спектров необходимо весьма подробно знать спектральные характеристики различных поглощающих групп атомов. Это положение напоминает положение хромофорных групп в молекулах органических веществ, ответственных за их окраску. [c.211]

    Толчком в развитии молекулярной спектроскопии явилось установление зависимости полос поглощения в инфракрасной области от собственных частот колебаний атомов в молекулах. Было показано, что исследования колебательных спектров позволяют делать заключения не только о химическом составе, но и о конфигурации молекул. Современные электронные счетные машины рассчитывают колебания и интерпретируют спектры сложных молекул, содержащих до 20—25 атомов. Молекулярный спектральный анализ имеет неоспоримое преимущество перед другими методами анализа органических веществ. В молекулярных спектрах отражаются специфические свойства элементов, входящих в анализируемые химические соединения эти спектры так же индивидуальны для каждого химического соединения, как и атомные спектры для каждого химического элемента. Поэтому молекулярный спектральный анализ получает все более широкое распространение в химической, нефтяной, резиновой, пищевой и многих других отраслях промышленности особенно важна возможность применения этого метода анализа для непрерывного контроля производственных процессов и для управления ими. [c.10]


    Вид спектра поглощения обусловлен состоянием электронов внешних орбиталей, участвующих в образовании химической связи. Например, спектральные свойства органических молекул обычно систематизируют в соответствии с типом валентных электронов электроны, образующие ординарную связь, называются а-электронами, образующие двойную связь — я-электрона-ми. Различным типам электронов свойственны различные электронные переходы, обусловливающие возникновение спектров с характерными полосами поглощения в том или ином его участке. Воздействие окружающей среды, например растворителя, также вызывает различные изменения в спектре в зависимости от типа присутствующих валентных электронов. [c.22]

    СПЕКТРАЛЬНЫЕ СВОЙСТВА ОРГАНИЧЕСКИХ МОЛЕКУЛ С Г-Г-ПОГЛОЩЕНИЕМ [c.202]

    В настоящее время для сложных молекул предсказать точное положение максимума, а тем более оценить степень их поглощения, весьма затруднительно. Поэтому обычно экспериментальные данные о спектрах поглощения используют для выводов о строении соединений. Вид спектра поглощения обусловлен в первую очередь состоянием электронов внешних орбиталей, участвующих в образовании химической связи. Так, например, спектральные свойства органических молекул обычно систематизируют в соответствии с типом содержащихся в них следующих валентных электронов электроны, образующие одинарную связь, называются а-электронами образующие двойную связь — зх-электронами. Кроме того, в молекулах, содержащих атомы таких элементов, как азот, кислород и т. п., имеется свободная пара электронов, или п-электронов. Различным типам электронов свойственны различные электронные переходы, обусловливающие возникновение спектров с характерными полосами поглощения в том или ином его участке. Кроме того, воздействие окружающей среды, например растворителя, вызывает различные изменения в спектре также в зависимости от типа присутствующих валентных электронов [2], [5]. [c.11]

    Давно известно [76], что в случае водных растворов органических красителей обычно наблюдаются отклонения от закона Бера. Известно также, что при связывании красителей в полимерах часто наблюдается изменение их спектров поглощения [77]. Отклонения от закона Бера объясняются димеризацией молекул красителей или образованием более сложных агрегатов, которые обладают иными спектральными свойствами. Образование димеров и олигомеров в растворе красителей приписывают [78] действию дисперсионных сил Лондона [79]. Эти силы приблизительно пропорциональны квадрату силы осциллятора и кубу длины волны поглощения [78], Таким образом, для молекул красителей они сравнительно велики. [c.1859]

    Электронные спектры поглощения являются важнейшей характеристикой органических соединений. Они тесно связаны со строением, физико-химическими свойствами и реакционной спО собностью органических молекул. Накоплен огромный экспериментальный материал и установлены определенные эмпирические закономерности между строением и электронными спектрами поглощения различных классов органических соединений. Электронные спектры широко используются при исследовании строения индивидуальных соединений, изучении кинетики и равновесия многочисленных реакций с их участием, идентификации и анализе органических и других химических веществ. Ими пользуются также как одним из наиболее удобных и обоснованных свойств в физико-химическом анализе. Разработана и широка применяется разнообразная спектральная аппаратура, с помощью которой получают надежные данные об электронных спектрах поглощения органических соединений. [c.3]

    Общеизвестно, что абсорбционные и эмиссионные спектры органических соединений зависят от свойств физической среды. Тонкая структура спектров поглощения ароматических соединений, наблюдаемая при исследовании их в неполярных растворителях, исчезает при исследовании спектров тех же соединений в водных растворах. В полярных растворителях уменьшается также интенсивность флуоресценции, и иногда весьма значительно. Такого рода наблюдения навели на мысль о возможности исследовать природу физической среды внутри белковой молекулы с помощью спектральных исследований специфических- группировок, присоединяемых для [c.225]

    Отождествление и идентификация веществ по электронным спектрам поглощения требует учета влияния непоглощающих замещающих групп на характеристики хромофора. В органической химии принято изучать влияние замещающей группы на распределение электронов в молекуле с точки зрения индуктивного и мезомерного свойств группы, т. е. рассматривать индуктивный эффект и эффект сопряжения этой группы. Поскольку электронные спектры молекулы характеризуют изменение электронного распределения при возбуждении, естественно влияние заместителей на спектральные характеристики изучать тоже с точки зрения индуктивного эффекта и эффекта сопряжения [2]. [c.146]


    Наиболее часто спектральные исследования веществ производятся в области 4000 -ь 2000 лi , в которой лежат полосы валентных колебаний молекулы воды, обусловленные изменением длин ее связей. Как и у гидроксилсодержащих соединений, спектры ассоциированных молекул воды зависят от температуры [191]. В зависимости от свойств среды, окружающей рассматриваемую молекулу воды, понижение температуры может приводить или к сужению voh-полос, или к их смещению в сторону меньших частот, или одновременно к обоим этим процессам. Понижение температуры кристаллогидратов, приводя к сужению полос поглощения воды, обычно совсем не меняет положения их максимумов [155, 191]. Для растворов воды в органических растворителях типична противоположная картина. При этом, как можно судить по имеющимся в настоящее время данным, скорость температурного смещения полос поглощения для воды независимо от их положения в интервале частот 3640—3350 составляет приблизительно 0,2—0,3 см Чград [191, 278]. Поэтому положение колебательных полос комплексов с молекулами воды в общем случае зависит от его строения и от температуры исследуемого объекта. [c.67]


Смотреть страницы где упоминается термин Спектральные свойства органических молекул с Г — Г-поглощением: [c.11]   
Смотреть главы в:

Фотохимические процессы в слоях -> Спектральные свойства органических молекул с Г — Г-поглощением




ПОИСК





Смотрите так же термины и статьи:

Органические молекулы



© 2025 chem21.info Реклама на сайте