Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран металлический реакция с тетрафторидом урана

    Фтор дороже, чем фтористый водород, поэтому для многих целей удобнее получать тетрафторид урана с помощью фтористо, го водорода, а затем получать гексафторид обработкой тетрафторида газообразным фтором. Однако последняя реакция происходит при высокой температуре и сопровождается выделением большого количества тепла, поэтому фторирование лучше проводить в жидкой фазе с помощью трехфтористого брома. Металлический уран и окись урана легко и спокойно вступают в реакцию с жидким трехфтористым бромом. Ход реакции можно регулировать путем охлаждения жидкой фазы. Сплавы урана и плутония также легко растворяются в трехфтористом броме, но пока весь уран не перейдет к гексафторид, плутоний остается в виде трифторида и, возможно, частично в виде тетрафторида. Уран может вступать в реакцию и с трехфтористым хлором. Последний легче хранить, с ним легче работать, чем с трехфтористым бромом, но он менее пригоден для фторирования в жидкой фазе. [c.194]


    Металлический уран получается восстановлением тетрафторида урана магнием [1 ]. Реакция может быть выражена следующим уравнением  [c.257]

    За исключением реакторов, работающих на гомогенном горючем, большинство современных исследовательских и энергетических реакторов используют уран в металлическом состоянии в виде сплава или чистого металла. Металлический уран можно получать высокотемпературным восстановлением галогенидов или окислов электролизом расплавленных солей или реакцией с активными металлами. Обычно металлический уран получают восстановлением его тетрафторида кальцием или магнием. [c.108]

    Наиболее важным из широко распространенных источников урана является урановая смолка — окисел переменного состава, приближающегося к иОз. Методы выделения урана многочисленны и сложны. На последних стадиях очистки нитрат уранила обычно экстрагируют растворителем из водных растворов. Для того чтобы металл можно было использовать в ядерных реакциях, он должен быть чрезвычайно чистым и не содержать элементов, способных поглощать быстрые нейтроны, например В или Сс1. Металлический уран требуемой чистоты получают восстановлением тетрафторида урана магнием или кальцием. [c.548]

    Уран в настоящее время имеет большое значение в атомной технике. Получают металлический уран восстановлением его окислов или галидов магнием, кальцием, гидридом кальция и щелочными металлами, электролизом расплавленных солей, термическим разложением галидов урана. Чаще в производстве металлического урана используют реакцию восстановления тетрафторида урана металлическим кальцием  [c.457]

    Восстановление должно проводиться в герметичном аппарате, так как в ходе реакции температура достигает 1300° С и металлический магний при этом имеет очень высокое давление пара. Аппараты для восстановления изготовляют из стандартных бесшовных труб различных размеров. Обычно используют аппараты длиной от 91 до 114 см и диаметром до 33 см. Расплавленный уран энергично взаимодействует с железом, поэтому необходимо избегать контакта между расплавленным содержимым и стальной оболочкой аппарата. Это обеспечивается футеровкой соответствующим огнеупорным материалом, например окисью кальция 141]. Огнеупорная подкладка служит для предотвращения загрязнения урана, а также для сохранения температуры реакционной смеси. Аппарат заряжают смесью тетрафторида урана с магнием, который должен быть взят в избытке от стехиометри-ческого соотношения. Теплота, которая выделяется в аппарате при реакции между компонентами смеси, недостаточна для того, чтобы полностью расплавить содержимое. Было установлено, что для начала реакции смесь должна быть нагрета до температуры порядка 500—700° С. После начала реакции при температуре 600° С из реакционной смеси выделяется достаточное количество тепла, чтобы полностью расплавить содержимое в аппарате и получить в результате массивный кусок металла. Кроме внешнего нагревания, тепло реакционной смеси может поставляться за счет одновременного осуществления другой изотермической реакции, которая, например, происходит при добавлении к смеси хлората калия [42]. [c.141]


    Механизм гидрофторирования металлов изучен мало. При взаимодействии некоторых элементов с HF важное значение может иметь образование промежуточных гидридных фаз. Было показано, что смесь водорода и фтористого водорода позволяет превращать металлический уран в тетрафторид при более низких температурах, чем при реакции с чистым фтористым водородом [154]. [c.337]

    Плавиковая кислота. На компактный металлический уран концентрированная плавиковая кислота действует медленно, даже при температуре 80—90°, вероятно вследствие образования на поверхности урана нерастворимого тетрафторида. Окислители, например перекись водорода, повидимому, заметно не ускоряют реакцию. [c.144]

    В последующих работах проведено повторное исследование реакции между водородом и тетрафторидом. Водород тщательно очищали пропусканием над нагретым металлическим ураном (стр. 141). При проведении реакции в кварцевой трубке при температуре выше 600° выделялись фторсодержащие газы. Продукт реакции, однако, в значительной степени состоял из двуокиси урана. Полученные данные объясняли следующим образом в присутствии следов влаги небольшое количество тетрафторида подвергается гидролизу, причем образуются двуокись урана и фтористый водород последний действует на кварц с образованием тетрафторида кремния и некоторого количества воды. Цикл повторяется до полного превращения тетрафторида урана в двуокись. Такой механизм реакции наиболее вероятен в том случае, когда водород медленно пропускается через систему. При проведении реакции между тетрафторидом урана и водородом в трубке из монель-металла выделения фтористого водорода не наблюдается совсем. Тетрафторид может быть выделен практически неизмененным даже после 48-часовой обработки чистым водородом при 980°. Эти результаты непонятны, поскольку, как указывается ниже, в Англии добились успеха в получении трифторида по существу тем же самым методом. [c.285]

    Получение тетрафторида урана из металлического урана или его гидрида гидрофторированием при высоких температурах. Металлический уран можно легко превратить в тетрафторид двумя основными способами. Первый заключается в проведении двух последовательных реакций  [c.296]

    Плотный металлический уран превращается сначала в гидрид при 250°. Чтобы достигнуть полного превращения гидрида в тетрафторид, необходимо тщательное перемешивание. Для второй стадии, повидимому, достаточна температура 200° [5]. Однако если реакционную смесь не перемешивать, то реакция между гидридом урана и фтористым водородом при 270° идет неполно вследствие спекания. Установлено, что если гидрид разложить при 500° и на полученный тонкораздробленный металл действовать фтористым водородом при той же самой температуре, то происходит превращение в тетрафторид с хорошим выходом [55]. [c.297]

    По второму способу обе стадии объединены в одну. Произведено исследование одновременно протекающих реакций водорода и фтористого водорода с металлическим ураном [56]. Небольшие количества (50 г) металлического урана при 250° легко превращаются в тетрафторид при действии смеси водорода и фтористого водорода, взятых примерно в равных молярных концентрациях. Большие количества урана не могут быть обработаны таким простым путем. На поверхности плотного куска металла происходит реакция между гидридом и фтористым водородом, при этом за счет выделяющегося тепла температура настолько поднимается, что скорость образования гидрида становится незначительной (эта скорость быстро уменьшается при приближении к 430°, как указано на стр. 162). Отсюда следует, что для проведения реакции необходимо охлаждение до 350°. Когда имеют дело с большими количествами урана, следует применять механическое перемешивание для удаления корки тетрафторида по мере его образования [57]. С учетом всех этих предосторожностей, можно считать, что применение одновременно протекающих реакций водорода и фтористого водорода с ураном целесообразнее, чем применение ступенчатого процесса. [c.297]

    Для получения гексафторида урана может использоваться и газообразный трехфтористый хлор. Реакция с металлическим ураном в этом случае протекает очень бурно. Минимальная температура, при которой наблюдается воспламенение, равна 205°. Фторирование тетрафторида урана протекает спокойнее. В интервале температур от комнатной до 50° реакция описывается уравнением [c.294]

    Экстракция плутония из облученного урана. При действии раствора тетрафторида урана в солевом расплаве, например в — Сар2, на расплавленный облученный уран плутоний переходит из металлической в солевую фазу по реакции [c.355]

    Приготовление гексафторида урана реакцией фтора с тетрафторидом урана. Впервые гексафторид урана был приготовлен реакцией фтора с металлическим ураном, карбидом или пятихлоридом урана [271 ]. Для существенной экономии фтора Абельсон [274 ] рекомендует в качестве исходного материала применять четырехфторид урана и вести реакцию при 274° С, используя в качестве катализатора плавленый хлористый натрий. Дальнейшая работа показала, что при температуре выше 250° С реакция легко идет и без катализатора [271 ]  [c.102]


    Руфф и Хайнцельманн [1] в 1909 г. успешно получали гексафторид урана реакцией фтора с металлическим ураном, карбидом урана и пентафторидом его. В 1941 г. Абельсон (Национальное бюро стандартов) сообщил о применении тетрафторида урана в качестве материала для реакции с элементарным фтором. В первом технологическом процессе, предложенном Абельсоном для осуществления этой реакции, фторирование производилось при 274° С в присутствии плавленого хлористого натрия как катализатора [2]. На основе этого процесса Дюпоном [3] был спроектирован и построен завод. Реакция велась в двух никелевых трубках, работающих последовательно. Полученный продукт, который не вполне отвечал техническим условиям, очищался далее быстрым испарением. В качестве другого метода очистки исследовалась также фракционная дистилляция. [c.452]

    На этом этапе производства ядерного горючего важнейшее соединение — тетрафторид урана, из которого могут быть получены гексафторид и двуокись урана или металлический уран. Тетрафторид урана можно получать двумя принципиально различными группами способов — водными (осаждением из растворов) и сухими (гидрофторированием твердых соединений газами при повышенных температурах). При газовом методе исходным соединением служит двуокись урана, а фторирующим реагентом — безводный фтористый водород, фториды аммония или фторсодержащие углеводороды. К сухим способам производства тетрафторида урана относятся также процессы получения его термическим разложением осадка аммонийуран-пентафторида, а также разнообразные реакции одновременного термического разложения, восстановления и гидрофторирования в атмосфере фторидов аммония. [c.154]

    Родербург [99] провел обширные исследования по проверке методов выделения чистого урана, в частности, метода восстановления галогенидов урана щелочными металлами. С целью повышения чистоты металла применяли бомбы из различных легированных сталей, но во всех случаях металлический уран получался со значительным содержанием железа. Родербург пытался также восстановить тетрафторид урана натрием и калием, но реакция проходила лишь частично. Фишер [100] и Райдил [101] также исследовали различные методы получения металлического урана. Наилучшим из значительного количества изученных методов они считали способ восстановления тетрахлорида урана магнием или натрием в присутствии хлорида кальция. Однако партии металла, полученные этим путем, имели различную степень чистоты, о чем можно судить по колебаниям электропроводности. Для того чтобы свести загрязнения кислородом и азотом к минимуму, восстановление тетрахлорида урана металлическим натрием проводили в эвакуированной металлической бомбе [102]. Продукт получился в виде тонкого порошка и попрежнему содержал значительные количества кислорода. Имеется детальное описание подобного процесса восстановления в вакууме [103]. [c.110]

    При проведении этой реакции большое значение имеет регулирование температуры, так как уравнение [4] обратимо и выше 1050° равновесие заметно смещается влево. Реакция может быть проведена в никелевом сосуде, в который загружается смесь тетрафторида со стехиометрическим количеством урана в виде стружек. Смесь нагревают до 250° и затем вводят водород для превращения металла в гидрид. После этого гидрид разлагают при 400° и получают таким образом тесную смесь тетрафторида урана с тонкодисперсным металлическим ураном. Эту смесь сплавляют при 1050° в течение 2 час. в атмосфере аргона. При этом получается черное плотное коксоподобное вещество, которое, как показывает анализ, представляет трифторид с примесью 1 °/о двуокиси урана и уранилфторида. [c.287]


Смотреть страницы где упоминается термин Уран металлический реакция с тетрафторидом урана: [c.206]    [c.284]   
Химия урана (1954) -- [ c.146 , c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Тетрафторид

Уранил-ион, реакции



© 2025 chem21.info Реклама на сайте