Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосферная коррозия меди и никеля

    Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные металлы, является легирование последних медью, хромом, никелем, алюминием и др. [c.182]


    Обычно вначале выявляют материалы, непригодные для использования в качестве покрытий, с учетом фактора окружающей среды. Так, из-за избыточной скорости коррозии алюминий в качестве покрытия неприемлем в сильной щелочной среде, алюминий и свинец — в среде с высоким содержанием хлорида алюминия, медь и цинк — в кислотной среде. Алюминий, медь, никель и олово хорощо противостоят атмосферным воздействиям, а алюминий и никель, кроме того, — нагреванию при повыщен-ной температуре, но они подвержены коррозии при ограниченном доступе кислорода. Никель, медь и олово устойчивы в пресной и морской воде, алюминий менее устойчив, особенно при высоком содержании хлоридов в воде. Во влажной среде, содержащей пары органических веществ, на цинк следует наносить покрытие кадмия. Алюминий, никель и олово имеют хорошую сопротивляемость к действию кислот. Свинец сохраняет [c.123]

    Ингибитор атмосферной коррозии меди, никеля [206]. Не защищает сталь, [c.139]

    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]

    Комбинации легирующих элементов. Рассмотрев и сравнив отдельное влияние на стойкость стали к морской атмосферной коррозии малых добавок меди, никеля и хрома, интересно сравнить и поведение сталей, содержащих различные комбинации этих трех, а также других элементов. Результаты коррозионных испытаний низколегированных [c.46]

    Латуни бывают простые, т. е. состоящие из меди и цинка (до 45 %), и специальные, которые наряду с медью и цинком содержат другие элементы. Поэтому коррозионная стойкость латуней определяется их химическим составом. Простые латуни менее стойки, чем медь, тогда как специальные латуни, содержащие 51, А1, N1, Сг, Мп и другие, по коррозионной стойкости не уступают меди. Так, введение в простую латунь алюминия повышает коррозионную стойкость сплава к атмосферной коррозии, а кремния — в морской воде. Введение марганца и никеля делает латунь более стойкой к атмосферной коррозии, морской воде, воздействию хлоридов, чем простые латуни. Механические свойства, химический состав и области применения некоторых латуней приведены в табл. 7. [c.61]


    В настоящее время разрабатываются новые виды антикоррозионных бумаг с использованием в качестве ингибиторов других производных нитро- и динитробензойной кислот, таких как нитробензоат цикло- и дициклогексиламина, нитро- и динитробензоат пиперидина, динитробензоат гексаметиленимина, нитро- и динитробензоат диэтиламина, морфолина, гуанидина. Это позволит расширить сырьевую базу производства универсальных антикоррозионных бумаг и обеспечить потребителей упаковочными бумагами, пригодными для защиты от атмосферной коррозии серебра, никеля, олова, алюминия, меди, железа, хромированного цинка и кадмия, оксидированного магния и т. д. [c.126]

    Ингибитор атмосферной коррозии меди, алюминия, никеля, стали [206]. Не защищает цинк, латунь [80]. При применении в виде ингибитированной бумаги (250 мг ингибитора на 140 см бумаги) предохраняет сталь (Ст. 20) т появления следов коррозии на 3 месяца (отн. влажность 40—85%). [c.139]

    Медь применяется в виде металла, многочисленных сплавов и соединений. Около 40% всей добываемой меди идет на изготовление электрических проводов и кабелей. Из меди изготовляют нагревательные аппараты. Сплавы меди с другими металлами широко применяются в машиностроительной промышленности, в электротехнике, в судостроении, энергетической промышленности. К важнейшим сплавам меди относятся бронза (90% Си, 10% Sn), латунь (60% Си, 40% Zn), мельхиор (80% Си, 20% N1), манганин (85% Си, 12% Мп, 3% N1), нейзильбер (65% Си, 20% Zn, 15% Ni), кон-стантан (59% Си, 40% N1, 1% Мп). Все медные сплавы обладают высокой стойкостью против атмосферной коррозии. Современные серебряные монеты сделаны из сплава меди с никелем ( u+Ni). [c.418]

    Ингибитор атмосферной коррозии алюминия, никеля [206, 239]. Неполностью защищает сталь и медь. [c.147]

    Ингибитор атмосферной коррозии меди, никеля, латуни [206, 239] не защищает алюминий неполностью защищает цинк, сталь. [c.145]

    Кристаллический порошок светло-желтого цвета, нерастворим в воде. Малотоксичен. Относится к летучим ингибиторам атмосферной коррозии. Температура плавления 230—240° С. Защищает от атмосферной коррозии серебро, никель, олово, оксидированный магний, медь. Не полностью защищает алюминий, кадмий, железо. На упаковочные материалы, деревянную тару, краски, органические покрытия, текстиль, кожу отрицательного действия не оказывает [c.105]

    Наиболее сильно в указанных условиях корродирует углеродистая конструкционная сталь. Небольшие добавки легирующих элементов заметно повышают сопротивляемость стали атмосферной коррозии, например, повышение содержания марганца и добавка, меди увеличивают устойчивость стали к атмосферной коррозии. Легирование никелем (до 3%) уменьшает скорость атмосферной коррозии в 4 раза по сравнению с обычной углеродистой сталью. Эти данные говорят в пользу применения низколегированных сталей, имеющих одновременно и более высокую хладостойкость. [c.508]

    Ингибитор атмосферной коррозии меди, алюминия, никеля (летучий), не защищает сталь, цинк, латунь 206, 239, 343, 882], [c.35]

    Ингибитор атмосферной коррозии меди, алюминия, никеля не защищает [c.134]

    Ингибитор атмосферной коррозии меди, алюминия, никеля, латуни [206] неполностью защищает сталь не защищает цинк. [c.136]

    Ингибитор атмосферной коррозии меди, алюминия, цинка, никеля [206, 239] не защищает сталь, латунь. [c.140]

    Ингибитор атмосферной коррозии меди, алюминия, цинка, никеля не защищает сталь, лат ь [206]. [c.148]

    В состав низколегированных сталей входят малые добавки таких элементов, как медь, хром, никель, молибден, кремний и марганец, за счет чего и достигается повышение прочности по сравнению с углеродистой сталью. Коммерческой характеристикой низколегированных сталей является не строгий химический состав, а их прочностные свойства. Суммарное содержание легирующих добавок обычно составляет около 2—3 %. В отношении атмосферной коррозии большинство низколегированных сталей обладает гораздо более высокой стойкостью, чем нелегированная малоуглеродистая сталь. Это преимущество особенно заметно в промышленных атмосферах, но и в морских условиях применение низколегированных сталей дает значительный выигрыш. [c.42]

    Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности. [c.180]

    Наибольшее практическое значение имеют электрохимические покрытия никелем и железом и в меньшей степени кобальтом. Никелирование — один из самых старых и распространенных видов защитно-декоративных покрытий, одновременно выполняющего функцию защиты от коррозии и декоративной отделки. Никелирование применяется как самостоятельное покрытие для меди и ее сплавов, а также в составе многослойных покрытий медь — никель — хром для стали. Никелирование относится к катодным покрытиям, так как никель более благородный металл, чем железо, и в атмосферных условиях и некоторых агрессивных средах может надежно защищать от коррозии только тогда, когда покрытие имеет достаточную толщину (40— 50 мкм) и беспористое. Поэтому с целью снижения пористости и экономии никеля его осаждают обычно на подслой меди толщиной 25—30 мкм. Для повышения защитной способности рекомендуется также способ никелирования в 2—3 слоя, основанный на различной электрохимической активности слоев никеля, содержащих и не содержащих серу (см. стр. 273). [c.306]


    Медь и ее сплавы [87]. Металлические системы ма основе меди (латуни, бронзы, медь — никель и медь — серебро) обладают умеренной стойкостью в атмосферных условиях средняя глубина проникновения -коррозии в сельской атмосфере составляет от 0,1 до [c.92]

    Из суспензии можно получать покрытия на металлах и других материалах, способных выдержать нагревание до 370 °С. Эти покрытия могут применяться как антифрикционные, антиадгезионные, антикоррозионные (для защиты от атмосферной коррозии, но не от агрессивных сред), электроизоляционные. Покрывать можно все металлы (сталь, никель, хром, кадмий, серебро, алюминий), кроме меди и медных сплавов, [c.145]

    Для защиты от атмосферной коррозии используют различные органические, неорганические и металлические покрытия. Эффективно легирование стали небольшими количествами меди, никеля, фосфора и хрома. [c.153]

    Железо не является коррозионностойким материалом. В атмосферных условиях скорость его коррозии в 5-10 раз превышает скорость коррозии цинка, никеля, меди. [c.179]

    Специальные латуни по коррозионной стойкости не уступают меди. Введение в простую латунь алюминия, марганца или никеля повышает стойкость сплава к атмосферной коррозии, а введение кремния — в морской воде. [c.206]

    МОНЕЛЬ-МЕТАЛЛ м. Сплав на основе никеля, содержащий 23 27% меди, иногда 2-3% железа и 1-2% марганца устойчив к атмосферной коррозии используется в судостроении, химической промышленности, медицине. [c.265]

    С. А. Балезин и В. П. Баранник для защиты металлических изделий от атмосферной коррозии предложили вводить в упаковочную бумагу и в консистентные смазки карбонат моноэтаноламина (препарат МЭАК). Производство карбоната моноэтаноламина и пропитанной им бумаги освоено Ваковским химическим заводом. Карбонат моноэтаноламина и предложенный нами позже бензоат моноэтаноламина по защитному действию практически не отличаются от применяемых за рубежом ингибиторов типа УРЛ и имеют тот же недостаток защищая черные металлы, вызывают коррозию меди, никеля и их сплавов. Описание способа изготовления, применения и анализа бумаги, пропитанной препаратом МЭАК, приведено в работе К. А. Несмеяновой н [c.159]

    НЕЙЗИЛЬБЕР м. Общее название группы сплавов на основе меди с 5-35% никеля и 13-45% цинка устойчивы к атмосферной коррозии применяются для изготовления медицинских инструментов, посуды, ювелирных изделий. [c.273]

    Хромат циклогексиламина, или ХЦА (МРТУ 6-04-144—63), — порошок ярко-желтого цвета. Растворяется в воде, этиловом и метиловом спиртах. 1% водный раствор имеет рН = = 7,5- 8,5. ХЦА предназначен для защиты от коррозии стали, чугуна, меди и ее сплавов, никеля, олова, алюминия и его сплавов. Используется в виде порошка или ингибированной бумаги. Порошок распыляют на поверхности металла из расчета 10—12 г/м . Содержание ингибитора в бумаге составляет 18—20 г/м . Как и в других случаях применения летучих ингибиторов атмосферной коррозии, после распыления порошка или обертывания в ингибированную бумагу изделия помещают в герметичные чехлы. В таких условиях ингибитор может защищать металлы до 5 лет. [c.152]

    Декоративное хромирование применяется во многих отраслях промышленности. Так, для защиты от атмосферной коррозии хромируются с подслоем никеля и меди наружная и внутренняя арматура автомобилей, части велосипедов, мотоциклов, арматура железнодорожного транспорта, трамваев и автобусов. Толщина слоя хрома в пределах 1—2 мк. [c.223]

    В таких условиях продукты коррозии остаются на металле и при хорошей адгезии замедляют процесс разрушения во времени. Скорчелеттн показал, что продукты атмосферной коррозии, возникающие на низколегированных и высокоуглеродистых сталях, обладают большей защитной способностью по сравнению с продуктами коррозии на углеродистых сталях. Объясняется это их меньшей способностью к капиллярной конденсации воды и большим потенциалом в связи с тем, что в состав пленки входят окислы хрома, меди и никеля. [c.13]

    В последние годы в СССР проведены работы в области синтеза и технологии производства ингибиторов атмосферной коррозии. Предложен ряд новых высокоэлективных средств борьбы с атмосферной коррозией. Для защиты черных и цветных металлов разработаны такие ингибиторы, как нитрит дициклогексиламина (НДА). Этот ингибитор под названиями УРУ-2бО, дайкен и диц-ган применяется за рубежом (США, Англия и др.) . НДА предохраняет от атмосферной коррозии сталь, никель-, хром, кобальт и стальные фосфатированные и оксидированные изделия на меди и медных сплавах он образует окисную пленку не влияет на каучук и синтетическую резину, текстиль, пробку, кожу, пластмассы и лаки на основе пластмасс. Однако НДА не защищает цинк, кадмий, олово, серебро, магний и его сплавы. [c.14]

    Ингибитор атмосферной коррозии меди, алюминия, цинка, никеля, латуни [206] неполностью запщщает сталь. Эффективен в качестве добавки в масляные краски [238] и поливинилацетатные лаки [449]. [c.140]

    Ингибитор атмосферной коррозии меди и никеля [206J не защищает сталь, алюминий, цинк, латунь. [c.140]

    Повышенную стойкость против атмосферной коррозии имеют стали, содержащие небольшое количество меди или меди с фосфором, например низколегированная сталь ЮХНДП. Охруп-чивающее влияние фосфора нейтрализуется введением в состав этой стали около 1 % никеля. [c.75]

    Так как никелевое покрытие в атмосферных условиях легко окисляется и тускнеет, его покрывают тонким слоем металлического хрома, который придает изделию стабильный блеск и хороший вид. Так осуществляется защита автомобильных деталей многослойным покрытием медь—никель—хром. Хромовый слой толщиной 0,3—1 мкм должен покрыться сетью микротрещин в сочетании с микропорами это увеличивает анодную поверхность никеля, и его коррозия имеет очень равномерный характер. Ми-кропоры на поверхности хромового покрытия образуются в специальных электролитах или при наличии подслоя блестящего никеля, содержащего включения, не проводящие ток (например, сульфат бария). На растрескавшемся хромовом покрытии образуется до 30—80 микротрещин на 1 мм это приводит к равномерному распределению плотности тока в коррозионном элементе хромовое пп1Р№ытие — никелевое покрытие . Такая технология позволяет уменьшить минимальную толщину никелевых покрытий на 25%, что дает значительную экономию дефицитного металла. [c.222]

    Основные закономерности электрохимических процессов, протекающих под тонкими фазовыми слоями влаги, применительно к условиям атмосферной коррозии, изучены Ро-зенфельдом и сотр. [106—108]. Исследования показали, что катодный процесс ионизации кислорода на железе, меди, никеле и цинке облегчается по мере уменьшения толщины [c.172]

    Катодные покрытия состоят из металла более положительного, чем защищаемый. В порах, трещинах и на оголенных участках таких покрытий растворимым металлом, т. е. анодом, будет защищаемый, причем от искусственно созданных катодных, иногда очень положительных участков (например, мэдь по отношению к стали), защищаемый металл будет еще больше растворяться. Иногда можно наблюдать, что плохо никелированные стальные предметы во влажных условиях ржавеют скорее, чем совсем не никелированные (см. рис. 173 в). Задача сводится к тому, чтобы создавать по возможности беспористые покрытия. Последнее практически очень трудно, поэтому часто прибегают к методу нанесения многослойных покрытий (медь 4- никель никель + медь + никель + хром и т. п.). Если одно меднение или одно никелирование стали не предохраняют последню ю от коррозии атмосферной влагой, то, например, двухслойное покрытие (никель с медным подслоем) является действенным. Поры медного покрытия перекрываются слоем никеля, поры которого редко совпадают с медным (см. рис. 173 г) в порах никелевого слоя, заполненных электролитом, короткозамкнутый гальванический элемент (медь — раствор — никель) не работает потому, что при анодной поляризации никель пассивируется и не растворяется. [c.334]


Смотреть страницы где упоминается термин Атмосферная коррозия меди и никеля: [c.241]    [c.783]   
Смотреть главы в:

Коррозия пассивность и защита металлов -> Атмосферная коррозия меди и никеля


Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.67 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия

Медь Коррозия

Медь атмосферная

Никель Коррозия

Никель коррозия атмосферная



© 2024 chem21.info Реклама на сайте