Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа на бумаге

    Ионный обмен можно применять для проведения макро- и микроопределений. Для разделения небольших количеств веществ используют ионообменную бумагу или проводят ионный обмен в тонких слоях. Количество анализируемой пробы выбирают в зависимости от последующего метода обнаружения или определения ионов. Для определения ионов после ионного обмена применяют кондуктометрические, полярографические, потенциометрические и радиохимические методы анализа. При проведении ионообменных разделений исследование фракций элюата часто проводят классическими методами анализа. При помощи ионного обмена можно проводить определение различных электролитов. Едва ли можно назвать сочетание элементов, для разделения которых нельзя использовать какой-либо метод ионного обмена [43]. Метод ионного обмена можно применять и для разделения неионогенных веществ после перевода их в ионогенные соединения. В качестве примера можно назвать разделение фруктозы, глюкозы и других сахаров в виде боратных комплексов. [c.381]


    В отличие от обычных методов анализа бесстружковый (капельный) метод позволяет выполнять многие реакции капельным методом на фильтровальной бумаге, получая цветные пятна. [c.120]

    Классификация хроматографических методов анализа. Разнообразие хроматографических методов, различающихся по физико-химической основе и технике выполнения анализа, не позволяет классифицировать их по какому-либо одному критерию. Наиболее важные показатели, отражающие физико-химическую сущность и особенности техники анализа, следующие агрегатное состояние разделяемых веществ — газ (пар) или жидкость (раствор) природа сорбента — твердое вещество или жидкость характер взаимодействия между сорбентом и разделяемыми веществами — распределение молекул или ионов менаду двумя фазами, образование координационных соединений в фазе или на поверхности сорбента, протекание окислительно-восстановительных реакций при контакте разделяемых веществ с сорбентом техника выполнения анализа — в колонке, капилляре, на бумаге, в тонком слое сорбента. [c.7]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    В курсе химических методов анализа изучают ионообменную хроматографию и хроматографию на бумаге, остальные хроматографические методы — в курсе физико-химических методов анализа. [c.108]

    Титриметрические методы анализа основаны на регистрации массы реагента, расходуемого на реакцию с определяемым веществом. Реагент (титрант) добавляют к анализируемому раствору либо в твердом виде (порошок, таблетки, бумага, пропитанная реагентом), либо чаще всего в виде раствора с точно известной концентрацией реагента. Можно измерять массу израсходованного титранта, взвешивая сосуд с исследуемым раствором и добавляемым реагентом (гравиметрическое титрование), или объем титранта, пошедший на титрование. В последнем случае массу титранта выражают через его объем по формулам [c.146]


    Капельный метод анализа. В 1920 г. проф. Н. А. Тананаев предложил капельный метод для проведения анализа применяют одну или несколько капель исследуемого раствора реактива. Реакции проводят на фильтровальной бумаге, часовом стекле, специальных пластинках с углублениями или в маленьких фарфоровых тиглях. На полоску фильтровальной бумаги наносят в определенной последовательности анализируемый раствор и реактивы и наблюдают появление пятен определенного цвета. На бумаге часто одновременно с обнаружением ионов наблюдается и их разделение (приближение к бумажной хроматографии). При выполнении анализа на часовых стеклах и пластинках наблюдают появление или растворение осадков или образование комплексов определенного цвета. Капельный метод имеет ряд преимуществ перед пробирочным методом для проведения ана- [c.540]

    Следует учитывать, что аминокислоты сильно различаются по своей структуре и отдельные реакции не всегда применимы ко всем из них, а именно некоторые реакции применимы только к алифатическим соединениям. Кроме того, при различных реакциях наблюдаются в значительной степени нежелательные побочные процессы максимальные достигаемые при этом выходы воспроизводятся с трудом и не позволяют точно количественно определять аминокислоты. Однако как качественный метод анализа газовая хроматография наряду с хроматографией на бумаге занимает важное положение в аналитической химии аминокислот. [c.271]

    Продукты реакции анализировали качественно методом хроматографии на бумаге и количественно определением содержания азота по Кьельдалю и титрованием продуктов в неводной среде. Углеводородную часть продуктов реакции анализировали методом адсорбции с флуоресцентными индикаторами. Применявшиеся методы анализа продуктов реакции подробно описаны в приложении. [c.125]

    Содержатся справочные сведения по физико-химическим и физическим методам анализа потенциометрии, кондуктометрии, амперометрии и полярографическому анализу, спектроскопии, фотоколориметрическому, нефелометрическому и турбодиметрическому анализам, пламенной фотометрии, флюоресцентному анализу, рефрактометрии, хроматографии на бумаге и ионообменных смолах. Приведены схемы анализа сложных веществ природного происхождения и искусственно полученных веществ (резины, пластмасс, различных нефтепродуктов), методы определения функциональных групп органических соединений, сведения по техническому анализу металлов и сплавов и др. [c.384]

    В настоящее время разработаны более совершенные методы анализа. Наиболее широкое распространение из них получили следующие распределительная хроматография на бумаге или на колонках с целлюлозой, углем и другими адсорбентами хроматография в тонком слое адсорбента газожидкостная хроматография производных моносахаридов электрофорез на бумаге. [c.70]

    Хотя количественные методы анализа в тонкослойной хроматографии разработаны в меньшей степени, чем в хроматографии на бумаге, они все же позволяют количественно характеризовать некоторые смеси углеводов, разделенных в тонком слое адсорбента. Ниже приводятся некоторые из этих методов. [c.80]

    За последние годы в практике лабораторий витаминных заводов все шире используются современные методы анализа спектрофотомет-рия, полярография и хроматография на фильтровальной бумаге и в тонком слое. [c.10]

    Результаты, сходные с хроматографией на бумаге, при разделении моносахаридов дает метод электрофореза на бумаге . Хотя проведение электрофореза по сравнению с хроматографией требует более сложного -оборудования, разделение веществ с помощью электрофореза происходит быстрее. Известно много случаев успешного применения электрофореза для исследования смесей, которые с трудом поддаются разделению путем хроматографии на бумаге. Поэтому электрофорез является ценным методом анализа моносахаридов, дополняющим метод хроматографии на бумаге . [c.411]

    Интересными представляются нейтронно-активационные методы, основанные на выделении мышьяка из облученной пробы в виде арсина и поглощении его бумагой, пропитанной солью рту-ти(П) [668, 669, 864]. Малая продолжительность и небольшая трудоемкость выделения и высокая селективность по отношению к мышьяку делают этот метод выделения мышьяка весьма перспективным для его использования в нейтронно-активационных методах анализа. [c.111]

    В 1920—1922 гг. Н. А. Тананаев разработал капельный метод анализа, в котором берут несколько капель реагентов. Реакции выполняют на фильтрованной бумаге или капельной пластинке. Этот метод занимает промежуточное положение между сантиграмм- и миллиграмм-методами. Он очень удобен для полевого анализа руд и минералов, его широко применяют в техническом, биохимическом анализе и исследовательских работах из-за простоты и экспрессности. [c.62]


    Пиролитическая газовая хроматография (ПГХ) представляет собой метод анализа нелетучих соединений и сложных нелетучих объектов, состоящих из большого числа соединений, по продуктам их термического разложения [49]. С помощью ПГХ можно, в частности, различать сложные объекты (различные образцы древесины, бумаги, классы микроорганизмов и т. д.), не вдаваясь в их детальный химический состав. Анализ этим методом осуществляют на обычной хроматографической аппаратуре, а пиролиз объектов проводят в специальной пиролитической ячейке (ПЯ), прилагаемой к прибору в составе пиролитической приставки (ПП). Последняя, кроме ПЯ, включает обычно блок питания. [c.188]

    Электрофоретический метод анализа и разделения растворимых в воде промежуточных продуктов и красителей рекомендуется вести на бумаге (250—400 в и 3—6 ма) в 0,1—0,05 н. соляной кислоте (pH до 1,75), фосфатных и фосфатно-цитратных (pH 2,35— 8,7) и боратных буферах (pH до 9,7). В отдельных случаях электрофорез рекомендуется вести в 3%-ном водном аммиаке (pH 11,4). [c.277]

    Применяемые до сих пор устройства в основном близки по конструкции к камерам, используемым в хроматографии на бумаге, и отличаются от них только размером. Для более удобного обозрения их можно в зависимости от методов анализа, используемых в настоящее время, подразделить на.  [c.23]

    Распределительную хроматографию на бумаге используют в качестве быстрого стандартного метода анализа нуклеиновых кислот. Ионообменная хроматография на колонках (см. стр. 446) нашла применение прежде всего для препаративного выделения мононуклеотидов и высокомолекулярных продуктов гидролиза дезоксирибонуклеиновых кислот. Опыты по фракционированию на крахмале [26, 31] или на адсорбенте [55, 56] не привлекли достаточного внимания. [c.442]

    ДРУГИЕ МЕТОДЫ АНАЛИЗА ОПРЕДЕЛЕНИЯ НА БУМАГЕ И ЖЕЛАТИНОВЫХ ПЛЕНКАХ [c.165]

    Большое значение имеют также радиоактивные методы анализа как с применением индика- оров, так и без них [40, 41]. Для этой цели были сконструированы специальные счетчики. Один из приборов для обнаружения и записи радиоактивных веществ иа бумажной ленте показан на рис. 18.5 он устроен таким образом, что полоска фильтровальной бумаги, протягиваемая синхронно с бумажной лентой самописца, проходит мимо отверстия счетчика активность поло- [c.258]

    Мастер должен показать учащимся приемы титрования и определения эквивалентной точки. Нужно напомнить учащимся, что реакция диазотирования, лежащая в основе этого метода анализа, — взаимодействие азотистой кислоты с ароматическим амином, — для различных аминов протекает с различной скоростью. Для ускорения реакции в ряде случаев добавляют бромистый калий. Образующиеся при реакции диазосоединения, как правило, малоустойчивы и титрование во многих случаях ведут при пониженной температуре (О—10° С). Большое значение имеет и скорость титрования. В зависимости от природы определяемого амина выбирают температуру реакции и скорость прибавления раствора азотистокислого натрия. В случае медленно диазотирующихся аминов прибавление раствора азотистокислого натрия ведут медленно. Как и в прямом бромометрическом титровании, здесь применяется внешний индикатор. В конце тй-трования после прибавления очередной порции раствора азотистокислого натрия, размешивания и выдержки на полоску йодокрахмальной бумаги наносят стеклянной палочкой каплю титруемого раствора. Появление темного пятна соответствует моменту конца титрования — весь амин уже связан и образовавшаяся азотистая кислота взаимодействует с индикаторной бумагой. Чувствительность йодокрахмальной бумаги сильно зависит от качества фильтровальной бумаги и от условий приготовления индикатора. Возможны случаи, когда при нанесении на йодокрахмальную бумагу капли раствора, соде ржащего незначительное количество азотистой кислоты, темное пятно не образуется. [c.184]

    Подробное рассмотрение специальных способов проведения выборок, разработанных для различных типов материалов, выходит за рамки этой книги. Необходимо лишь сослаться на публикации учреждений, занимающихся контролем, и правительственных органов, которые изучают способы отбора проб в различных материалах. Эти способы для металлов, неметаллических конструкционных материалов, бумаги, красителей, различных топлив, нефтепродуктов и масел приводятся в сборниках стандартов и других изданиях Американского общества испытания материалов Журнал ассоциации агрохимиков регулярно публикует методы отбора проб и анализа масел, удобрений, кормов, воды, лекарств и т. д., каждые 5 лет выпускается новое издание Официальных методов анализа Аналогичные методы публикуются и периодически пересматриваются Американским обществом нефтехимиков для растительных жиров, смазочных масел, мыл и нефтепродуктов. Способы отбора проб для различных типов материалов приводятся в книге Стандартные методы анализа Скотта , где имеется много ссылок на оригинальную литературу. [c.637]

    В качестве примера использования фотохимической активности соединений серебра в химическом анализе можно привести метод приготовления бумаги, пропитанной серебром, для количественного определения хроматов [257] (см. гл. VII), а также высокочувствительный метод определения самого серебра [403] (см. гл. VI). [c.72]

    Чувствительность определений лимитируется холостым опытом, величина которого составляла пЛО —10" %. Следовательно, при сочетании распределительной хроматографии на бумаге с активационным методом анализа можно повысить чувствительность определения примесей в индивидуальных Р.З.Э. до 10- —10-4%. [c.364]

    Другой весьма удобный метод анализа СНГ изложен в А5ТМ В2420. Проба испаренной газовой фазы (расход 2,36 л/мин) омывает лист бумаги так же, как и при методе газовый экзаменатор . Если обесцвечивания не наблюдается, объемная доля НгЗ ниже ,00015 %. В отношении оценки уровня концентрации НгЗ в исходной жидкой фазе СНГ нужно дать некоторые пояснения. Допустим. что уровень обнаружения корреспондируется с максимально регламентированной техническими условиями объемной долей 0,0001 %, т.е. с концентрацией НгЗ в газе, определяемой по ацетатсвинцовой бумаге. Если упомянутый метод использован для испытания пробы жидкости, взятой из герметичного сосуда, при полном испарении ее, то максимальная массовая доля НгЗ в жидкой фазе будет равна 0,00008 %, молярная — 0,0001 %, а объемная — 0,00005 %. Если молярное распределение НгЗ между жидкой и газовой фазами в герметичной емкости с температурой 20°С равно 1 6, то максимальная молярная доля НгЗ в парах, находящихся над поверхностью жидкости, равна 0,0006 % объемная— 0,0006 %, массовая — 0,00047 %. [c.88]

    При скрининге применяются тщательно отработанные методы анализа, в том числе качественные и полуколичественные, например цветные реакции в индикаторных трубках [25,26]. В последних газообразную пробу пропускают через слой сорбента, модифицированного селективным реагентом. Микрофаммовые количества ДДТ и альдрина в растениях можно обнаружить по окрашенным пятнам на индикаторной бумаге, пропитанной 1%-ным раствором о-толуидина в ацетоне достаточно выдержать влажный срез растения в контакте с бумагой в течение 30 с [27]. Предложены также индикаторные бумаги для определения ртути, кобальта и других тяжелых металлов [28,29]. Следует заметить, что в настоящее время ощ> щается большая потребность в достаточно простьгх и чувствительных методах определения высокотоксичных веществ [c.157]

    Результаты применения иммунохимических методов анализа в определении следовых количеств токсикантов показывают, что эти методы более гфоизводительны, нежели инструментальные, порой в 10 и более раз Стоимость оборудования и реактивов, особенно для ИФА, также значительно ниже В настоящее время выпускаются наборы реагегггов для определения наиболее часто встречающихся зафязнителей. Пре/цгожены варианты анализа, в которых реагенты закреплены на полосках бумаги 2 В табл. 7.12 приведены примеры использования иммунохимических методов для определения некоторьгх пестицидов. [c.300]

    Бумажная хроматография возникла на основе метода распределительной хроматографии на целлюлозе (Консдон, Гордон, Мартин). Предшественником бумажной хроматографии был метод капиллярного анализа в этом методе полосы бумаги или шерстяные нити подвешивали в раствор смеси разделяемых красителей, раствор проникал в капилляры нитей и красители распределялись по зонам. [c.354]

    Все эти недостатки существующих методов систематического анализа заставили Н. А. Тананаева подробно разработать капельный метод на бумаге или на пористых пластинках и дробный метод в полуми-кропробирках. В дробном методе важную роль играет выделение катионов из раствора в виде металлов. Это осуществляется с помощью свободных металлов. Последние можно использовать соответственно порядку расположения их в электрохимическом ряду напряжений магний, алюминий, цинк, железо, олово, медь. Магний и алюминий позволяют вытеснить большинство металлов из раствора. Однако удобнее применять цинк как менее активный металл, вытесняющий в солянокислой среде ртуть, серебро, медь, мышьяк, сурьму, висмут, олово. Выделив эти металлы, можно, например, дробным путем обнаруживать кальций в виде оксалата. [c.151]

    Наличие одной переменной в модели (толщины стенки трубы) и соответствующий переход к скоростному показателю позволяют объяснить причину второго провала на рис. 1.30. Его появление обусловлено скачкообразным изменением толщин стенок труб различных типоразмеров, применяемых при строительстве магистральных газопроводов (от 9,5-12 мм для труб диаметром 1020 и 1220 мм до 17мм для труб диаметром 1420 мм). Анализ полной статистики с помощью метода вероятностной бумаги в рамках предложенной модели (рис. 1.33) подтвердил правомерность вышеприведенного разделения магистральных газопроводов на две группы и возможность ее использования только для прогнозирования отказов трубопроводов Г группы. Граница разделения этих групп по скоростному показателю КР видна на приведенном рис.33. Для прогнозирования времени до разрушения трубопроводов II группы могут быть использованы только оценочные характеристики с малой степенью достоверности. При этом следует отметить, что первые отказы по причине КР на импортных трубах, изготовленных из сталей контролируемой прокатки группы прочности Х70, происходили на участках с дефектными трубами (сегрега- [c.62]

    С целью определения пригодности целлюлозы для изготовления бумаги предлагают также определять бумагообразующие свойства среднюю длину волокон собственную прочность волокон способность волокон к уплотнению во влажном состоянии грубость волокон способность к размолу и др. Рекомендуют также при исследовании растительного сырья на пригодность его для производства бумаги проводить опытные варки целлюлозы с последующими ее испытаниями на бумагообразующие свойства. У целлюлозы для химической переработки определяют свойства, характеризующие ее реакционную способность. Основные химические и физико-химические методы анализа технических целлюлоз приведены в [30]. [c.542]

    Существует три этапа в этом классическом методе анализа последовательности. Первоначально РНК расщепляют иа фрагменты умеренной длины (примерно 50 пар оснований) частичным гидролизом РНазой. Затем анализируют общий состав оснований этих дискретных фрагментов с последующим их расщеплением до маленьких блоков, для которых можно непосредственно установить последовательность оснований. И наконец, большие по размеру фрагменты располагают в нужном порядке, используя частичное перекрывание последовательностей. Такие частичные перекрывания возникают в результате различных способов расщепления, получаемых при действии панкреатической РНазы (специфичной к пиримидинам) и такадиастазы Т] (специфичной к гуанозину). Сложное разделение большого числа фрагментов, получаемых в результате частичного расщепления нуклеазами, удается наилучшим образом осуществить при использовании двумерного разделения ( фингерпринт ), сочетая ионофорез на ацетате целлюлозы при pH 3,5 в одном направлении и ионофорез- на ДЕАЕ-целлюлозной бумаге при кислых значениях pH [30]. Во всех случаях фрагменты детектируют без деструкции с использованием Р-меченных нуклеотидов. [c.193]

    Начиная с 30-х годов, в ГНЦЛС были начаты фундаментальные исследования по физико-химическим методам анализа, теории кислотноосновного титрования в неводных растворителях, полярографии, комплексонометрии, спектрофотометрии в види.мых — УФ и ИК— областях спектра, хроматографии на бумаге в тонких слоях сорбента. [c.18]

    Общие методы разделения включают хроматографию в смесях водных и органических растворителей или электрофорез, или и то и другое на бумаге. Из двух методов более медленным является хроматография, в то время как высоковольтный электрофорез может быть проведен в течение 30 мин. Способы обнаружения фосфатов на бумаге варьируют в зависимости от исследуемых соединений наличие в молекуле нефосфатного фрагмента может позволить применить быстрый недеструктивный метод анализа, например нуклеотиды можно определять по поглощению в УФ-свете. [c.411]

    Известны и фотометрические методы определения содержания серебра в этих препаратах, а также в аргироле и в таргезине [745]. Для анализа некоторых фармпрепаратов пригоден метод, основанный на осаждении серебра избытком м-додецилмеркаптана и амперометрическом титровании избытка реагента раствором AgNOa при потенциале —0,23 в с платиновым микроэлектродом [746] или метод потенциометрического титрования раствором соли V(II) [99]. Серебро в гомеопатических средствах определяют [613, 1383] дитизоновым методом, в биологических материалах — методом хроматографии на бумаге [1400]. Рентгенофлуоресцентный метод анализа фармацевтических препаратов описан в [1431]. [c.193]

    Дробный метод анализа (метод дробных реакций) является своеобразным развитием капельного метода, разработанного в 1920 г. Н. А. Тананаевым и независимо от него Ф. Файгелем. Если капельный анализ производится на бумаге или фарфоровых пластинках, то дробный анализ — в пробирках, но с небольшими объемами растворов. [c.292]

    Аналогичным образом можно обнаружить одновременно с 8 или [27, 28, 63, 65]. Алюминиевая фольга толщиной < 0,1 мм экранирует мягкое излучение радиоактивной серы и углерода, в то время как излучение радиоиода с большой энергией легко проходит через тонкие слои алюминия. Радиоавтографы хроматограмм на бумаге и хроматограмм в тонких слоях могут быть количественно промерены фотоденситометрически или по величине пятна. Возможности этого метода анализа будут нами рассмотрены ниже. [c.69]

    Большинство применяемых в настоящее время химических методов анализа являются неспецифичными. С успехом были использованы методы колоночной хроматографии [2, 35, 40]. Для подобных разделений требуется, однако, большое количество анализируемой смеси. Поэтому колоночная хроматография используется главным образом для обогащения инсектицидных фракций, которые идентифш ируются затем — как указали Мюллер, Эрнст и Шох [30] — методом хроматографии на бумаге пли методом ХТС. [c.361]

    Термический анализ начали применять в конце XVIII в., когда химики разработали метод определения степени чистоты веществ ло температурам их плавления. Однако широкое распространение термический анализ получил лишь в 1878 г., когда немецкий ученый Э. Виде-ман предложил скорость охлаждения расплавленных металлов выражать в виде кривых в координатах температура — время. Этот метод анализа находил все более широкое применение по мере совершенствования приборов для измерения температур. В конце XIX в. появились приборы для автоматической записи температуры исследуемого вещества, которая фиксируется в виде кривой на светочувствительной бумаге. Очевидно, что с этого времени в термическом анализе оформилось методологическое направление — термография. Несколько позже, уже в текущем столетии, появилось новое направление в термическом анализе — термогравиметрия. [c.5]

    За последнее время- большое внимание уделяется графитовому индикаторному электроду, который широко применяется в электрохимических методах анализа в том числе и в амперометрическом титровании 28-33. Для работы обычно рекомендуется использовать не чистый графит, а графит, предварительно пропитанный воском, парафином, клеем БФ-2 или некоторыми другими веществами 3 -зб. На пропитанном электроде наблюдается значительно меньший остаточный ток, чем на непропитанном, и улучшается воспроизводимость результатов. Это объясняется способностью пропитывающих реагентов, так называемых импрегнаторов, снижать остаточный (емкостный) ток вследствие заполнения пор графита и создания более плотной поверхности. При этом импрегнаторы почти не уменьшают величины диффузионного тока. Пропитка электрода также значительно расширяет предел его поляризации в отрицательную область потенциалов. Так, например, в кислом растворе пропитанный графитовый электрод можно поляризовать до потенциала —0,6 в, а непропитанный только до —0,1 в (НВЭ). Различие в пределе отрицательной области поляризации пропитанного и непропитанного графитовых электродов объясняется наличием в порах непропитанного графита кислорода воздуха, который восстанавливается и тем самым обусловливает резкое возрастание катодного тока. Поэтому при пропитке электрода необходима стремиться к тому, чтобы воздух, наполняющий поры графита, полностью из них вышел. Графитовый электрод особенно перспективен, поскольку поверхность его легко может быть обновлена путем зачистки наждачной бумагой, а некоторые посторонние процессы, в частности восстановление растворенного в электролите кислорода, происходят на графитовом электроде при значительно более отрицательных потенциалах, чем на платине. [c.45]

    Условия электрофореза напряжение 850—700 в, сила тока 8—12 ма, время фракционирования 5—6 ч. После прекращения подачи разделяемой смеси и снятия напряжения протекание буферного раствора по бумаге не прекращалось, в течение суток производили вымывание фракций, сдвинутых под влиянием электрического поля. Как и при хроматографическом разделении, для характеристики фракций применяли спектрофотометрический метод анализа. Результаты псследовачий приведены на рис. 23, е. Они описываются семейством монотонно убывающих кривых приведенных оптических плотностей с удалением пробы от вертикальной линии ввода исследуемой смеси они приближаются к абсциссе в длинноволновой области спектра. Крутизна спада спектральных кривых поглощения света, определяемая величиной отношения 48о/ 56о, для отдельных фракций следующая проба V — 3,2 проба VII — 3,4 проба X — 6,0. Таким образом, отклонение движения потока жидкости от вертикального при электрофорезе увеличивается с переходом от гуминовых кислот к фульвокислотам в связи с большей подвижностью последних в электрическом поле постоянного тока. [c.61]

    Для этого они готовят серию растворов разной концентрации, разбавляя соответствующим образом более концентрированный раствор с точно установленной коицентрацией. Затем определяют удельные электропроводности этих растворов, составляют таблицу и калибровочную кривую. Калибровочная кривая в данном случае представляет собой графическую зависимость электропроводности от концентрации. Такого рода графики используются и в других физико-химических методах анализа. Их следует вычерчивать тущью на миллиметровой бумаге. [c.195]

    Видоизменения метода анализа электролизом.. Днялиз электролизом применяют и для качественных определений отдельных элементов. В 1928 г. чешским химиком А. Глазновым был предложен электрографический метод определения отдельных катионов испытуемый образец металла или минерала зажимают между двумя электродами, к которым подводят постоянный ток в 10—20 в. Катод покрывают фильтровальной бумагой, смоченной каким-либо электролитом и реактивом на определяемый ион. Под влиянием тока определяемый ион переходит на катод, где дает характерную цветную реакцию с реактивом, которым пропитана фильтровальная бумага. В некоторых случаях, строго стабилизируя силу тока и время электролиза, по интенсивности окраски можно с.удить и о количестве определяемого иона в образце. [c.323]


Библиография для Метод анализа на бумаге: [c.249]   
Смотреть страницы где упоминается термин Метод анализа на бумаге: [c.496]    [c.103]    [c.62]    [c.356]    [c.5]   
Введение в количественный ультрамикроанализ (1963) -- [ c.165 ]




ПОИСК







© 2024 chem21.info Реклама на сайте