Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие ионов кальция и алюминия III, фиг

    Отрицательное действие ионов Н и АГ сильнее проявляется при небольшом количестве других катионов, особенно кальция, в растворе. Вследствие антагонизма одноименно заряженных ионов они взаимно мешают поступлению в растение друг друга. Поэтому при высокой концентрации в растворе катионов кальция задерживается поступление в корни ионов водорода и алюминия, и отрицательное влияние их ослабляется. В присутствии кальция растения способны переносить более кислую реакцию, чем без кальция. [c.141]


    Вступая в поглощающий комплекс почвы, калий вытесняет в раствор эквивалентное количество других катионов и в первую очередь кальция. В кислых почвах в обмен на ионы калия почвенный раствор обогащается ионами водорода, алюминия и марганца, неблагоприятно действующими на клевер, пшеницу, лен, свеклу, капусту, а также на многие полезные бактерии — нитрифицирующие, клубеньковые и свободноживущие в почве азотфиксаторы. Поэтому на кислых почвах систематическое внесение калийных солей должно сопровождаться нейтрализацией почвенной кислотности. [c.296]

    Определение магниевой ж е с т к о с т и. Титрование ионов магния комплексоном III проводят после предварительного осаждения ионов кальция оксалатом натрия. Образующаяся при этом взвесь оксалата кальция не мешает определению. Если в воде присутствуют ионы алюминия и железа, в присутствии оксалата они образуют комплексы, но при действии аммиачной буферной смеси возможно выделение их гидроокисей, которые также не мешают определению. [c.198]

    При твердении сульфатно-шлакового цемента в первую очередь реагируют с водой гипс и портландцемент. Раствор насыщается ионами 504 -и Са + и активизирует гидратацию зерен шлака. При этом, вследствие небольшого содержания в сульфатно-шлаковом цементе клинкера, решающую роль в возбуждении шлаков играет сульфат кальция. Под действием ионов ЗО - на поверхности частиц шлака протекает реакция между гелеобразными гидратами окисей кальция и алюминия с образованием вначале гидроалюминатов, а затем и гидросульфоалюмината кальция. Пластинчатые и игольчатые кристаллы [c.586]

    Действие окислителей и восстановителей. Катионы бария, стронция, кальция, магния, алюминия устойчивы по отношению к окислителям и восстановителям. Ионы марганца, хрома (III), железа (И) и (III) и висмута (III) вступают в реакции окисления и восстановления как в кислой, так и щелочной средах. В щелочной среде хлор, бром, перекись водорода, гипохлорит, двуокись свинца, перманганат окисляют ионы хрома (III) в хромат, а в кислой среде — в бихромат. [c.39]

    Возникли некоторые сомнения относительно действия ферро-хромлигносульфоната, так как было установлено, что происходит катионообмен между Fe + и Сг + лигносульфоната и Na+ и a + глины этот обмен дает основание предположить, что лигносульфонаты адсорбируются на базальных поверхностях. Тем не менее, в результате рентгеноструктурного анализа не было обнаружено значительных изменений с-расстояния. Объяснить это можно тем, что лигносульфонаты, по-видимому, реагируют с алюминием у ребер кристаллов, но при этом высвобождаются ионы хрома и железа, которые затем вступают в ионообменную реакцию с ионами натрия и кальция на базальных поверхностях. [c.158]


    Для преодоления этого затруднения может быть использован закон действия масс. Добавляют к пробе избыток другого элемента, который образует с мешающим ионом такую же или же еще более термостойкую соль, как показано на рис. 55. Здесь можно видеть, что добавление стронция к пробам, содержащим кальций и алюминий, приводит к восстановлению теоретической интенсивности кальция. Этот прием широко распространен, и можно предположить, что он будет пригоден и для геохимических проб, особенно при наличии самопишущего прибора. [c.202]

    Действие окислителей и восстановителей. Катионы бария, стронция, кальция, магния, алюминия устойчивы по отношению к окислителям и восстановителям. Ионы марганца, хрома (III), железа (II) и (III) и висмута (III) вступают в реакции окисления и восстановления как в кислой, так и щелочной средах. [c.52]

    Интересное исследование коррозии алюминиевых сплавов было проведено Сверена [37], который обнаружил, что рециркулирующие воды являются значительно более агрессивными по сравнению с речными или подпиточными водами. Коррозия проявляется главным образом в виде точечной. В присутствии кислорода наиболее разрушающими свойствами обладали ионы меди, хлора, кальция и бикарбоната. Особенно быстро образуются питтинги в присутствии меди, что связано с контактным осаждением ее ионов иа поверхности алюминия. В практических условиях зарегистрированы случаи, когда в системах, изготовленных из алюминия, где для микробиологической обработки использовались препараты, содержавшие медь, происходило быстрое разрушение алюминия. Ионы хлора обладают способностью проникать через защитную окисную пленку и вызывать коррозию. Вредное действие могут оказывать также бикарбонат-ионы, поскольку опи относятся к опасным ингибиторам, т. е., подавляя общую коррозию, могут [c.91]

    Из амилолитических ферментов, например, а-амилаза активируется ионами кальция, который способствует сохранению нужной конформации и повышению стабильности третичной структуры макромолекул фермента к денатурации и действию иептидгндролаз. На плесневые а-амилазы стабилизирующее действие оказывают ионы алюминия. Все а-амилазы инактивируются ионами металлов ртути, меди, серебра и ионами галоидов — хлора, брома, фтора и йода. [c.121]

    Действие титанового желтого 28Hl906N5S4Na2. Спиртовой или водный раствор органического красителя, титанового желтого, при прибавлении щелочи окрашивается в желтый цвет. В присутствии малых количеств магния окрашивание переходит в огненно-красное. При высоком содержании магния выделяется аморфный осадок гидроокиси магния, окрашенный в темнокрасный цвет. Ионы алюминия, цинка и олова мешают реакции. Ионы кальция и бария усиливают ее в их присутствии окрашивание делается более интенсивным. [c.195]

    Большое значение для образования прочных структур имеет природа поглощенных катионов. Например, поскольку гуматы кальция почти не растворимы в воде, они являются весьма ценными при формировании водопрочных структурных агрегатов. Наоборот, гуматы натрия — плохие структу-рообразователи, так как они легко пептизируются и растворяются и агрегированные ими минеральные частицы легко распадаются под действием воды. Если в почве содержатся карбонатные соли, то формирование структурных агрегатов происходит за счет склеивания почвенных частиц гуминовыми кислотами путем связывания гуминовых кислот обменным кальцием или адсорбцией на поверхности частиц карбоната кальция. Далее И. Н. Антипов-Каратаев считает, что в почвах с кислой реакцией па поверхности почвенных минералов могут образовываться молекулярно-ионные припои , происхождение которых может быть связано с окислением поверхностных атомов железа кристаллической решетки или же (чаще всего) с гидролизом на поверхности минеральных частиц адсорбированных ими ионов железа, алюминия. [c.112]

    Кальций способствует росту корней. Потребность растений в нем проявляется с момента прорастания семени. Если при недостатке азота, фосфора и калия в первую очередь ослабляется развитие надземной части, то нри недостатке кальция — рост корневой системы. При отсутствии кальция во внешней питательной среде корни ослизняются и заболевают, на листьях появляются желтые пятна, нарушается углеводный и азотный обмен, затрудняется восстановление в растениях нитратов до аммиака. Кальций способствует усвоению растениями аммиачного азота, оказывает влияние на физико-химические свойства протоплазмы — ее вязкость и проницаемость, нейтрализует образующиеся в растениях органические кислоты, в частности щавелевую, устраняет или ослабляет вредное действие на растения одностороннего избытка других катионов. На кислых почвах растения часто страдают от избытка ионов водорода, алюминия, железа и марганца внесение кальция на этих почвах сни/кает их вредное действие на растения. Молодые, растущие части растения содержат мало кальция. Меньше всего кальция в семенах, больше — в листьях и стеблях, особенно стареющих. [c.29]


    Отрицательное действие ионов Н и АГ" сильнее проявляется при небольшом количестве других катионов, особенно кальция, в растворе. Вследствие антагонизма одноименно заряженных ионов они взаимно мешают поступлению в растение друг друга. Поэтому при высокой концентрации в растворе катионов кальция задерживается поступление в корни ионов водорода и алюминия, и отрицательное влияние их ослабляется. В присутствии кальция растения способны переносить более кислую реакцию, чем без кальция. В вегетационном опыте М. К. Домонтовича пшеницу выращивали в сосудах с дистиллированной водой, имеющей различную величину pH. В часть сосудов добавляли СаС1г. Спустя некоторое время были измерены корни пшеницы и получены следующие результаты  [c.133]

    В приведенном примере изоморфизма в полевошпатовых минера лах ион кальция в анортите способен замещаться ионами натрия из альбита и в то же время ионы алюминия частично могут замещаться ионами кремния. Подобного рода замещения возможны при наличии в основном трех условий 1) радиусы взаимозамещающихся структурных единиц не должны отличаться друг от друга более чем на 15% 2) сумма валентностей замещающихся ионов должна быть равна сумме валентностей замещаемых ионов 3) влияние на окружающие структурные единицы или поляризующее действие замещенных ионов должно быть равно такому же влиянию замещенных ионов. [c.136]

    Исследовано влияние количества и свойств растворенных солей на разделение суспензий глинистых сланцев [220]. Опыты проведены с применением анионоактнвного, катионоактивного и неионогенного флокулянтов в присутствии хлоридов натрия, кальция и магния, карбонатов натрия, кальция и магния, сульфатов натрия, магния, железа и алюминия при концентрации 100—5000 ч. на 1 млн. Установлено, что эффективность действия флокулянтов зависит от концентрации и валентности ионов солей, причем влияние этих факторов на каждый флокулянт различно. [c.196]

    Исследования Шеррика [16], изучавшего адсорбцию водородных ионов, происходящую при добавлении кислот к нефтяньш эмульсиям Н/В, показали, что для полного разрушения их нужна определенная концентрация водородных ионов. По эффективности действия кислоты можно расположить в следующий ряд НС1>Н5 804 >СНзСООН. В некоторых случаях эмульсия Н/В разрушается при добавлении солей с двух- и трехвапентными металлами, такими как хлориды железа, алюминия, кальция и др. [c.37]

    Имеется много патентов [131 на способы разрушения эмульсий Н/В при помощи кислот. Исследования Шеррика, изучавшего адсорбцию водородных ионов, происходящую при добавлении кислот к нефтяным эмульсиям, показали, что для полного деэмульгирования нужна определенная концентрация водородных ионов. Но эффективности действия кислоты можно расположить в следующий ряд НС1 > H2SO4 > GH3 OOH. Он также обнаружил, что при использовании хлорного железа происходит адсорбция ионов, в результате чего эмульсия разделяется на два слоя. В некоторых случаях эмульсии нефти в воде хорошо разрушаются при добавлении солей с двух- и трехвалентными катионами (хлористый кальций, хлористый алюминий). [c.45]

    В соединениях щелочноземельным металлам свойственно окислительное число +2. Соединения, в которых они имеют окислительное число +1, так называемые субсоединения, характеризуются малой устойчивостью. Двухзарядные положительные ионы относятся к типу 8е (у Ве тип иона 2е ) для них характерен относительно большой радиус и малое поляризующее действие. Соединения этих элементов бесцветны, кроме соединений с окрашенными анионами, и большинство из них мало растворимо в воде. Растворимыми обычно являются соединения типаМеХг, где X —одновалентный кислотный остаток (кроме фторидов магния и кальция). Соединения подобного типа характеризуются линейным строением молекул. Некоторые соединения бериллия типа ВеХг (где X—водород или органический радикал) склонны к полимеризации и действительный состав их выражается формулой (ВеХг) (сходство с алюминием). [c.48]

    Для приготовления пищи и в качестве питьевой может быть использована природная вода, если она не содержит вредных микроорганизмов, а также вредных минеральных и органических примесей, если она прозрачна, бесцветна и не имеет привкуса и запаха. В соответствии с Государственным стандартом содержание минеральных примесей не должно превышать 1 г/л. Кислотность воды в единицах pH должна быть в пределах 6,5—9,5. Концентрация нитратного иона не должна превышать 50 мг/л. Естественно, что она должна также отвечать бактериологическим требованиям и иметь допустимые показатели на токсичные химические соединения. Этим требованиям наиболее часто удовлетворяет колодезная и родниковая вода. Однако в больших количествах найти воду, отвечающую Государственному стандарту, трудно. Поэтому ее приходится очищать на специальных станциях. Основными стадиями очистки являются фильтрование (через слой песка) и обработка окислителями (хлором или озоном). В некоторых случаях приходится применять коагуляцию. Для этого используют сульфат алюминия АЬ (804)3. В слабощелочной среде, создаваемой карбонатами кальция, под действием воды эта соль гидролизуется и из нее получается хлопьевидный осадок гидроксида алюминия А1(0Н)з, а также сульфат кальция Са304 в соответствии с уравнением [c.13]

    Дезодоранты и озоновый щит планеты. Каждый знает, что дезодоранты — это средства, устраняющие неприятный запах пота. На чем основано их действие Пот выделяется особыми железами, расположенными в коже на глубине 1—3 мм. У здоровых людей на 98—99 % он состоит из воды. С потом из организма выводятся продукты метаболизма мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспира-нами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки. [c.107]

    Полисиликаты лития в основном используются как противокоррозионные покрытия, содержащие тонкодисперсный цинк, в которых кремнезем играет роль неорганического связующего вещества [109, 110]. Добавление органосиликоната улучшает водостойкость покрытия [111]. Сообщается, что подобный состав годится как связующее вещество для тормозных накладок [112]. Возможное добавление в этот состав небольшого количества эмульсии стирол-акрилового сополимера ведет к улучшению адгезии к стали [ИЗ]. Другой добавкой, способной улучшить стойкость полисиликатов к морской воде, является небольшое количество гидроксида бария [114]. Согласно Дюпре и Бумену [115], силикат бария более растворим, чем соль кальция или стронция, поэтому в растворе будет достаточное количество силикат-ионов, способных ингибировать коррозию алюминия под действием щелочи. Адгезия и способность к связыванию грунтовых лаков, обогащенных цинком, соединенных с полисиликатом лития, были улучшены замещением некоторого количества дифосфида железа или кадмия на цинк [116]. [c.205]

    Известно, что силикагель промышленного изготовленп г содержит примеси. Это окислы железа, алюминия, ионы, натрия и кальция, которые часто являются нежелательными при использовании силикагеля в качестве адсорбента, катализатора или носителя. Их действие проявляется в ухудшении хроматографических свойств силикагеля, в снижении термостойкости, уменьшении селективности приготовленных на его основе катализаторов и др. [c.127]

    Кампетти [80] наблюдал излучение положительньш ионов при соединении меди с кислородом или хлором и, определяя их подвижность, пришел к выводу, что эти ионы были образованы вероятно окисью меди. Клеменсивиц [243] указывает, что он наблюдал подобное явление при восстановлении окисленной меди в атмосфере водорода, Ребуль[332] предполагает, что аналогичные результаты получаются при окислении амальгамированного алюминия, натрия и кальция влажным воздухом, при действии сероводорода на серебро и щелочные металлы, и при действии двуокиси углерода на щелочь. Томсон [451, 452] наблюдал излучение электронов при введении водорода в сплав натрия и кальция. Хотя количество электронов было весьма значительным по сравнению с происходившим химическим действием, Томсон утверждает, что натрий, помещенный в атмосферу водорода, реагирует подобно платине и палладию, т. е. с увеличением излучения электронов. Считается, что водород вызывает изменение энергии, сопровождающееся выделением электрона, а также изменением контактного потенциала. [c.249]

    Окись бария и окись железа (про-мотирующее действие описано для окислов, имеющих большие ионные радиусы) окислы щелочноземельных металлов отрицательно влияют на катализатор, это влияние увеличивается с уменьшением ионного радиуса, потому что сила их деформирующего влияния на поле катализатора увеличивается (аналогичный эффект получается с другими исследованными окислами, а именно, окисями кальция, магния, стронция, цйнКа, алюминия, висмута, перекисью марганца, окисями никеля, кобальта, меди) [c.374]

    В отдельных случаях ирисутствуюш,ий в системе органический реагент может предотвращ,ать гасящее действие некоторых посторонних ионов. В водном растворе, содержащем соляную или уксусную кислоту, 8-оксихинолин не только увеличивает интенсивность эмиссии определяемых элементов — кальция и стронция, но и снижает гасящее действие алюминия, вызванное образованием трудно-летучего соединения aAlgO. [655—657]. Аналогично действует также ацетилацетон [656]. [c.199]

    Гидратация и твердение. Гидратация шлакопортландцемента представляет собой более сложный процесс, чем гидратация портландцемента, так как в реакции с водой одновременно участвуют оба компонента вяжущего. При гидратации клинкерной части шлакопортландцемента образуются те же кристаллогидраты, что и при твердении портландцемента гидроалюминаты, гидросиликаты и гидроферриты кальция, комплексные соли и ги-драт окиси кальция. Под воздействием образующегося при атом насыщенного раствора извести проявляется активность стекловидных частичек гранулированного шлака и на их поверхностях также развиваются процессы гидратации и гидролиза. Гидрат окиси кальция действует как щелочной возбудитель, нарушающий структуру кислых гидратных оболочек на зернах шлака и приводящий к образованию алюминатов и силикатов кальция на основе стекловидной фазы. Алюминаты и силикаты кальция образуются в пределах оболочек из новообразований, окружающих частички шлака, при взаимодействии гелей кремневой кислоты и гидрата глинозема с гидроокисью кальция и кристаллизуются из раствора при взаимодействии гидратированных ионов алюминия, кальция и кремния. Присутствующий в составе шлакопортландцемента в качестве регулятора сроков схватывания гипс вследствие своей относительно хорошей растворимости также быстро насыщает раствор и действует как сульфат- ный возбудитель твердения шлака, приводя к образованию гидросульфоалюмината кальция. [c.442]

    Состав поглощенных катионов оказывает большое влияние на физические и химические свойства почвы, на условия роста сельскохозяйственных культур и действие удобрений. От состава поглощенных катионов в значительной степени зависит состав почвенного раствора. При взаимодействии с почвенным раствором поглощенные почвой катионы вытесняются в раствор (в обмен на катионы растворимых солей). Если почва содержит в поглощенном состоянии много кальция, то при внесении растворимых удобрений (NH4NO3, КС1 и др.) в почвенный раствор будет вытесняться преимущественно кальций, а если поглощенного кальция мало и в поглощенном состоянии находится много ионов алюминия и водорода, то при внесении удобрений в почвенный раствор будут вытесняться алюминий и водород, что вызывает его подкисление. [c.124]

    При обработке прокаленной шихты — хроматного спека водой из него выщелачиваются твердый раствор хроматов натрия и кальция, алюминат натрия и сода. Другие твердые составные части спека под действием воды превращаются в новые минеральные фазы, остающиеся в шламе или взаимодействующие с компонентами системы. Так, в результате медленной гидратации и гидролиза силикатов кальция образуются гидросиликаты кальция и в раствор переходит гидроокись кальция, которая реагируя с ионами Сс " или Mg + образует нерастворимые СаСОз или М (0Н)2 — Э1 о ускоряет гидролиз. Аналогично этому при взаимодействии с водой алюминатов кальция образуются гидроалюминаты кальция и гидроокись алюминия. Вследствие гидролиза клинкерных минералов, главным образом алюмоферритов, происходит деградация водорастворимых хроматов с образованием гидрохромалюмнната каль- [c.588]

    Типовой состав бентонита (в %) 5Юг — 72,1 Л Оз — 14,3 РегОз—1,7 ЫагОК2О — 2,2 М 0 —2,0 потери при прокаливании — 6,0. В бентонитах, в зависимости от месторождения вместо алюминия присутствует магний, натрий и другие катионы. Такие бентониты относятся к группе монтмориллонитов. Натриевый монтмориллонит, в отличие от кальциевого, имеет характерную осо-бенность набухать в воде и образовывать рыхлые тели, адсорбирующие значительные количества растворенных в воде неорганических и органических веществ. Природные силикаты алюминия (без поврехностной обработки) применяются как адсорбенты и находят ограниченное применение в качестве наполнителей из-за их гидрофильности и значительного содержания щелочных (обменных) ионов —К, Ма и др. Для устранения этих недостатков высокодисперсные глинистые минералы обрабатывают поверхностно-активными веществами, в качестве которых используют четвертичные алииламины, стеарат кальция и другие соединения. Модификаторы придают наполнителю способность хорошо совмещаться с пленкообразующими и оказывать структурирующее действие в лакокрасочных системах. [c.422]

    По данным Ангела с сотрудниками, при разложении амальгамы натрия действие ванадия усиливается в присутствии железа [244], в условиях же электролиза наблюдается обратное действие. Эти же авторы установили, что алюминий в количестве 5—12 мг л усиливает действие ванадия, титана и меди, но не влияет на действие железа, никеля, марганца и кальция. Ионы 50 (до 8 г/л), бромиды, иодиды и хлораты (до 0,1 г/л) не влияют на скорость разложения амальгамы. При добавлении силиката натрия подавляется действие ванадия, хрома и молибдена, но не устраняется совместное действие магния и железа. Ангел с сотрудниками, изучая действие силиката натрия при электролизе, наблюдали, что после внесения силиката в рассол на поверхности катода образуется пленка кремнекислоты, препятствующая разряду ионов натрия и приводящая к разряду ионов водорода. Так, при концентрации кремния 30 мг л содержание водорода в хлоре достигало 30%. Если же рассол, содержащий силикат натрия, стоял до электролиза в течение нескольких часов, то в процессе электролиза пленка не 0браз01вывалась и увеличение выделения водорода не наблюдалось. [c.42]

    Действие добавок солей магния сходно с действием кальция. Магний ингибирует выделение водорода в присутствии солей германия, ванадия, молибдена и никеля. При наличии в растворе солей хрома магний, в отли-4He от кальция, стимулирует выделение водорода и так же, как кальций, является стимулятором в присутствии солей железа. Как показано [21], магний при концентрации до 100 мг/л не вызывает в процессе электролиза снижения выхода по току. В присутствии 5—25 мг/л магния в рассоле наблюдается значительное усиление каталитического действия титана, алюминия, меди, железа, никеля и марганца [22]. Наблюдаемое потускнение поверхности катода в присутствии солей магния объяснялось тем, что гидроокись магния образует на поверхности катода своего рода пленку, препятствующую прохождению ионов натрия и проницаемую для ионов водорода. Следует, однако, отметить, что такое объяснение вряд ли обосновано, поскольку в опытах других авторов и в промышленной практике каталитическое влияние солей магния не всегда наблюдается даже в тех случаях, когда концентрация магния больше. [c.32]


Смотреть страницы где упоминается термин Действие ионов кальция и алюминия III, фиг: [c.254]    [c.158]    [c.418]    [c.103]    [c.231]    [c.34]    [c.23]    [c.60]    [c.473]    [c.129]    [c.369]    [c.450]    [c.635]    [c.820]    [c.524]    [c.47]    [c.283]    [c.322]   
Физическая химия силикатов (1962) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий действие на ионы

Кальция действие на ионы



© 2024 chem21.info Реклама на сайте