Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гены активация

    Геном эукариот обеспечивает сложнейшие программы развития и клеточной дифференцировки, которые осуществляются в результате последовательной активации и инактивации множества генов, взаимодействующих друг с другом. Эукариотическая клетка содержит во много раз больше генов, чем прокариотическая. Ниже приведено содержание ДНК в разных организмах (п. н. в расчете на гаплоидный геном)  [c.185]


    Таким образом, реакцией, ответственной за развитие цепи,, является стадия (3)—взаимодействие между атомом галогена н молекулой водорода. При переходе вниз по подгруппе гало генов энергия активации процесса (3) возрастает, а энергия активации обрыва цепи (5) понижается, вследствие чего цепной механизм реакции с участием иода, а также брома ослабляется. Порядок реакции брома с водородом зависит от концентраций реагентов и непрерывно изменяется в ходе реакции, что говори об изменении механизма процесса. Взаимодействие иода с водо родом проходит частично по цепному механизму, ио в основном через образование промежуточного комплекса НдЬ . [c.58]

    Еще более удивителен тот факт, что под влиянием факторов внешней среды в клетке может быть запущена иная программа развития, связанная с активацией дополнительных генов и существенной перестройкой всей клетки. Примером может служить образование спор у некоторых бактерий (гл. 1, разд. А, 8), происходящее при неблагоприятных для вегетативного роста условиях внешней среды. [c.353]

    В результате прекращения транскрипции с промотора Р не считывается, в частности, ген сП. Отсутствие же белка СП должно инактивировать промотор Р е и прекратить тем самым дальнейшую транскрипцию гена с1. Промотор Р е действительно угнетается, а транскрипция гена с1 в лизогенной клетке тем не менее продолжается, но уже с другого, нового промотора Prm (рис, 153 и 155), активация которого — одно из следствий присоединения репрессора I к правой операторной зоне. Новый промотор функцио- [c.294]

    Подробная биография белка необходима для оценки биологического значения данного остатка. Как было показано на предыдущем примере, фиксация замен аминокислот почти полностью зависит от биологической роли соответствующей аминокислоты. Однако оценить эту роль довольно трудно, поскольку она может быть связана не только с определенной функцией белка, например каталитическим действием фермента, а со всеми другими взаимодействиями белка в организме на протяжении его жизненного пути от активации соответствующего гена до разложения полипептида. И хотя такие подробные биографии белков пока еще не доступны, можно тем не менее сделать некоторые общие замечания.  [c.201]

    Особая сг-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Промоторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- жениях —И и —21 . Поэтому неудивительно, что эти промоторы ке используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, а , кодируемая геном гроМ. Однако для функционирования промотора гена глутаминсинтетазы белка (J недостаточно. Необходим еще ДНК-связывающийся белок, называемый NR[. Перед промотором имеется пять участков его связывания наибольшее сродство NRj проявляет к двум отдаленным участкам. Эти последовательности необходимы для активации промотора при низких концентрациях NRj и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR i взаимодействует с РНК-полимеразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-види- [c.153]


    Деконденсацию хроматина прн транскрипции можно также наблюдать с помощью светового микроскопа на политенных хромосомах дрозофилы. Такие хромосомы содержатся во многих тканях личинок насекомых. Политенные хромосомы дрозофилы состоят примерно из 1000 нитей ДНК, лежащих рядом друг с другом таким образом, что гомологичные участки соседствуют и образуют поперечные полоски. Политенные хромосомы соответствуют интерфазному хроматину. Каждый функциональный домен в политенной хромосоме представлен Б виде диска, содержащего плотно-упакованную ДНК. Диски разделены менее плотными междисковыми участками. Чередование дисков и междисков образует характерную строго постоянную картину, причем крупные генетические перестройки проявляются в видимых изменениях хромосом. В ходе индивидуального развития личинок картина дисков и междисков несколько меняется. Но особенно ярко изменения транскрипционной активности хроматина политенных хромосом проявляются при индукции генов. Такая индукция достигается, например, при нагревании личинок (так называемый тепловой шок) или при введении гормона насекомых экдизона. При активации транскрипции происходит резкая деконденсация хроматина в определенных дисках и образуются так называемые пуфы. В пуфах можно обна- [c.252]

    Важная особенность всех этих взаимодействий — то, что для них требуется много времени. Латентный период действия гормона может составлять несколько часов или суток, а регуляторные процессы иногда длятся несколько суток или недель. Значительную часть этого времени занимают различные внутриклеточные события, запускаемые гормоном, — воздействие гормона на геном, активация ферментов, синтез белков и перестройка клетки (см. гл. 9). Напротив, в нервной системе передача и обработка информации происходит чрезвычайно быстро— длительность различных процессов здесь измеряется миллисекундами или секундами. Преобразование быстрых сигналов в медленные частично происходит в нейроэндокринных клетках, а также в связанных с ними нейронах есть данные а том, что это преобразование может быть связано с фосфори-лированием Са +-зависимого белка (см. гл. 9). Таким образом, в нейроэндокринной системе могут протекать процессы с самыми различными временными характеристиками, и одна нз задач современной науки состоит в том, чтобы понять, как согласуются между собой все эти процессы. [c.166]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    Механизм действия метилирования не раскрыт. Модифицированная ДНК может оказывать влияние на локальную структуру в составе хромосомы. Вероятно, метилирование отдельных сайтов в составе гена меняет характер взаимодействия с белками и структуру хроматина. Действительно, сайты метилирования в отдельных исследованных генах совпадают с так называемыми гиперчувствитель-ными к нуклеазам сайтами в составе хроматина, наличие которых отражает активное состояние гена или его готовность к активации (см. гл. ХП). Метилирование может влиять и на структуру ДНК-Например, метилирование цитозина в составе синтетических поли-дезоксинуклеотидов с повторяющейся комплементарной последовательностью типа d( pG) -d(Gp ) способствует их переходу в Z-конформацию ДНК. [c.220]

    Внедрение мобильного элемента внутрь гена или около гена вызывает разные эффекты. Во многих случаях происходит инактивация гена, напри-мер нарушается образование нормальных транскриптов в результате терминации вблизи сайтов полиаденилирования в одних ДКП или, наоборот, инициации в других ДКП (рис. П9, б). При интеграции в район промотора на 5 -фланге гена. мобильный элемент может резко активировать экспрессию гена, обеспечивая транскрипцию с собственного промотора. Однако активирующее влияние элемента может наблюдаться, если направления транскрипции в ДКП и в гене противоположны. Возможно, активация транскрипции и экспрессии гена осуществляется в таком случае благодаря воздействию энхансеров, привно-СИ.МЫХ элементо-м (рис. U9, в). Действительно, в составе ДКП нли тела ряда мобильных элементов находятся нуклеотидные последовательности, ведущие себя как энхансеры, т. е. действующие независимо от ориентации по направлению к транскрипции гена (см. гл. X). [c.230]


    После активации промотора Prm транскрипция гена с1 автоматически поддерживается на постоянном уровне при избыточном накоплении белка I он присоединяется к участку Орз, что делает невозможной дальнейшую транскрипцию с промогора Р м активность этого промотора восстанавливается, как только концентрация репрессора снижается до уровня, при котором его хватает только для присоединения к участкам Ori и Орг. Такой способ регуляции активности гена при помощи продукта этого же гена называют аутогенной регуляцией. [c.295]

    Поскольку в составе многих МДГ присутствуют промоторы транскрипции, а также особые последовательно-сти-усилители, обладающие способностью повышать эффективность транскрипции с участием др. промоторов, внедрение МДГ может активно влиять на деятельность всего генного окружения. Возможно, активация определенных генов иногда оказывается полезной для организма. В то же время внедрение радом с протоонкогенами МДГ может вести к онкогенной трансфорлмации клетки. Предполагают, что в опухолевых клетках происходит активация процессов транспозиции нек-рьк типов М.г.э., что ускоряет микро-эволюцию опухолевых клеток и способствует развитию опухолей. [c.80]

    РЕГУЛЯТОРНЫЕ БЕЛКИ (от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры). [c.217]

    Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., гормоны) в принципе так же, как бактериальные клетки реагируют на. изменения концентрации питат. в-в в окружающей среде, т.е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При зтом Р. б., одновременно контролирующие активность большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. 6. [c.218]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]


Смотреть страницы где упоминается термин Гены активация: [c.511]    [c.391]    [c.294]    [c.73]    [c.136]    [c.126]    [c.186]    [c.200]    [c.201]    [c.205]    [c.230]    [c.253]    [c.257]    [c.296]    [c.545]    [c.57]    [c.93]    [c.362]    [c.32]    [c.598]    [c.218]    [c.191]    [c.126]    [c.186]    [c.200]    [c.201]    [c.205]    [c.229]    [c.230]   
Гены (1987) -- [ c.338 ]




ПОИСК







© 2025 chem21.info Реклама на сайте