Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клонируемые сайты

    Множественный клонирующий сайт для встраивания чужеродной ДНК [c.198]

    Для выделения и исследования более длинных генов или группы соседних генов с прилежащими к ним последовательностями необходимо клонировать фрагменты ДНК еще большей длины (30—45 т. н. п.). Для клонирования таких фрагментов были сконструированы специальные векторы с большей емкостью — космиды, представляющие собой гибридную молекулу, содержащую специальный os-участок генома фага, за счет чего они могут упаковываться в головку фага X, и специальные последовательности, позволяющие им реплицироваться по плазмидному типу. Размер космиды довольно мал по сравнению с фаговым вектором — всего 5 т. н. п. и, следовательно, в космиду можно вставить чужеродную ДНК значительных размеров (30—45 т. н. п.). Фаговые головки, содержащие такую рекомбинантную ДНК, не могут размножаться как фаги. Ими трансформируют клетки Е. соИ. Гибридная молекула, содержащая эукариотическую ДНК, обрамленную os-сайтами, размножается в Ё. соИ как плазмида, и каждая фаговая частица вызывает образование колонии индивидуального бактериального трансформанта [c.41]


    Многие плазмиды несут гены, обусловливающие устойчивость к антибиотикам. Это оказывается полезным при создании клонирующих систем. Обычно используют плазмиду, несущую два гена, обеспечивающих устойчивость к разным антибиотикам. Один из них служит просто для идентификации бактерий, несущих плазмиду, путем отбора клеток, устойчивых к антибиотику. Другой служит для того, чтобы отличить гибридную плазмиду от родительского вектора. Если сайт встраивания чужеродной ДНК находится внутри такого гена, гибридная плазмида теряет устойчивость к антибиотику. Таким образом, селекция родительского вектора может производиться по признаку устойчивости к двум антибиотикам, в то время как отбор гибридной плазмиды может основываться на сохранении устойчивости к одному антибиотику и чувствительности-к другому. [c.237]

    Клонирование фрагментов, полученных путем механического дробления, сопряжено с рядом технических трудностей в вектор легче встроить рестрикт. Однако сложность такого встраивания состоит в том, что сайты рестрикции могут находиться в неудобных местах, например в середине гена, который надо клонировать. Один из способов преодоления этой трудности состоит в использовании более чем одной рестриктазы, т.е. в повторении эксперимента с различными ферментами, сайты узнавания которых занимают разные положения. Но это требует дополнительного времени, и при работе с длинной последовательностью бывает сложно найти фермент, не разрезающий ее. [c.243]

Рис. 9.13. Синтетические фрагменты ДНК, содержащие сайты рестрикции, можно использовать в качестве связующих звеньев (линкеров) при создании рекомбинантных молекул. А. Любой фрагмент ДНК без липких концов можно клонировать при использовании двухцепочечных линкеров. Б. Структура трех линкеров. Рис. 9.13. Синтетические фрагменты ДНК, содержащие <a href="/info/1324920">сайты рестрикции</a>, можно использовать в <a href="/info/1608864">качестве связующих</a> звеньев (линкеров) при <a href="/info/1409454">создании рекомбинантных</a> молекул. А. Любой фрагмент ДНК без липких концов можно клонировать при использовании двухцепочечных линкеров. Б. Структура трех линкеров.
    Химический синтез палиндромных двухцепочечных олигонуклеотидов, получивших наименование линкеры (связывающие звенья) дает возможность клонировать любые фрагменты чужеродной ДНК безотносительно к специфичности сайтов рестрикции. Эти короткие тупоконечные (т.е. не обладающие одноцепочечными концами) молекулы двухцепочечной ДНК могут ДНК-лигазой фага Т4 ковалентно соединяться с произвольными тупоконечными фрагментами ДНК, которые мы хотим клонировать (рис. 9,13), Эти фрагменты могут выстригать- [c.279]

Рис. 10-20. А, Конструирование ряда мутантов по регуляторной области путем олигонуклеотиднаправленного мутагенеза. У каждого мутанта изменен блок из четырех нуклеотидных пар. Таким образом, для изучения 108 нуклеотидов в энхансере р-глобина необходимо получить 27 последовательных мутантов. Б. Встраивание мутантного энхансера Р-глобина в специальную тест-плазмиду. Олигонуклеотид и клонирующий сайт сшиваются ДНК-лигазой. Белок, образуемый рекомбинантным геном, представляет собой бактериальный фермент хлорамфениколацетилтрансферазу ( AT), активность которого леп о определить. В. Исследование мутантных эихаисеров по их воздействию на синтез РНК. Синтез РНК измеряется косвенным образом по количеству белка, образуемого рекомбинантным геном (т. е. по активности AT). Рис. 10-20. А, Конструирование ряда мутантов по <a href="/info/1902219">регуляторной области</a> путем олигонуклеотиднаправленного мутагенеза. У каждого <a href="/info/1304605">мутанта изменен</a> блок из четырех нуклеотидных пар. <a href="/info/461013">Таким образом</a>, для изучения 108 нуклеотидов в энхансере р-глобина необходимо получить 27 последовательных мутантов. Б. Встраивание мутантного энхансера Р-глобина в <a href="/info/1345559">специальную тест</a>-плазмиду. Олигонуклеотид и клонирующий сайт сшиваются ДНК-лигазой. Белок, образуемый <a href="/info/1304384">рекомбинантным геном</a>, представляет <a href="/info/1795776">собой</a> <a href="/info/1320715">бактериальный фермент</a> <a href="/info/200694">хлорамфениколацетилтрансферазу</a> ( AT), <a href="/info/1355150">активность которого</a> леп о определить. В. Исследование мутантных эихаисеров по их воздействию на синтез РНК. Синтез РНК измеряется косвенным образом по <a href="/info/1549434">количеству белка</a>, образуемого <a href="/info/1304384">рекомбинантным геном</a> (т. е. по активности AT).

    Типичный вектор, сконструированный на основе фага М13. В некодирующую область фагового генома встроена часть /ас-оперона со//. Затем в ген 1ас1 встроен сегмент длиной 42 п.н., содержащий несколько сайтов для эндонуклеаз рестрикции (полилинкер, или мульти-клонирующий сайт). [c.245]

    Один из способов создания библиотеки ДНК состоит в обработке донорной ДНК рестриктазой, уз-наюшей тетрануклеотиды. Такой рестриктазой является БаиЗМ, которая вносит один разрыв примерно на 256 пар оснований. Гидролиз проводят в таких условиях, чтобы происходило лишь частичное расщепление, так что образуются фрагменты всевозможных размеров (рис. 4.10). Частичный гидролиз позволяет клонировать целые гены, однако, поскольку сайты рестрикции расположены не случайным образом, некоторые фрагменты могут оказаться слишком крупными для клонирования. В результате в распоряжении исследователя оказьшается неполная библиотека, что может затруднить или даже сделать невозможным обнаружение искомой [c.63]

Рис. 6.5. Клонирующий вектор pAVlO (без соблюдения масштаба). Показано положение гена устойчивости к тетрациклину (Tef), сайта рестрикции для эндонуклеазы Bglll, сайта инициации репликации (ori), промотора (р) и полилинкера (ПЛ). Встраивание клонированного гена в полилинкер ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции. Рис. 6.5. <a href="/info/199908">Клонирующий вектор</a> pAVlO (без соблюдения масштаба). Показано <a href="/info/700874">положение гена</a> устойчивости к тетрациклину (Tef), <a href="/info/1324920">сайта рестрикции</a> для эндонуклеазы Bglll, <a href="/info/1868768">сайта инициации</a> репликации (ori), промотора (р) и <a href="/info/1386520">полилинкера</a> (ПЛ). Встраивание <a href="/info/32984">клонированного гена</a> в <a href="/info/1386520">полилинкер</a> ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции.
Рис. 6.7. Клонирующий вектор системы слияния. Он содержит ген устойчивости к ампициллину (Атр ) в качестве селективного маркера, 5 -концевой сегмент гена ompF, кодирующий N-конец наружного мембранного белка, сайт для рестрицирующей эндонуклеазы АЬс и укороченный ген -галактозидазы (la Z). Ген, который хотят клонировать, встраивают в Ab l-сайт. После транскрипции и трансляции этой генетической конструкции образуется трехкомпонентный химерный белок. Рис. 6.7. <a href="/info/200133">Клонирующий вектор системы слияния</a>. Он содержит ген устойчивости к ампициллину (Атр ) в качестве <a href="/info/1409321">селективного маркера</a>, 5 -концевой <a href="/info/509216">сегмент гена</a> ompF, кодирующий N-конец наружного <a href="/info/101039">мембранного белка</a>, сайт для <a href="/info/200438">рестрицирующей эндонуклеазы</a> АЬс и укороченный ген -галактозидазы (la Z). Ген, который хотят клонировать, встраивают в Ab l-сайт. После транскрипции и трансляции этой <a href="/info/1396268">генетической конструкции</a> образуется <a href="/info/200689">трехкомпонентный химерный</a> белок.
    Свойства любого белка зависят от его конформации, которая в свою очередь определяется аминокислотной последовательностью. Некоторые аминокислоты в полипептидной цепи играют ключевую роль в определении специфичности, термостабильности и других свойств белка, так что замена единственного нуклеотида в гене, кодирующем белок, может привести к включению в него аминокислоты, приводящему к понижению его активности, либо, напротив, к улучшению каких-то его специфических свойств. С развитием технологии рекомбинантных ДНК появилась возможность производить специфические замены в клонированных генах и получать белки, содержащие нужные аминокислоты в заданных сайтах. Такой подход получил название направленного мутагенеза. Как правило, интересующий исследователя ген клонируют в ДНК фага M13. Одноцепочечную форму ДНК этого фага копируют с использованием олигонуклеотидного праймера, синтезированного таким образом, чтобы в ген-мишень был встроен определенный нуклеотид. Затем трансформируют двухцепочечными ДНК M13 клетки Е. соИ. Часть образующихся в клетках фаговьгх частиц несет ген, содержащий нужную мутацию. Такие частицы идентифицируют, встраивают мутантный ген в экспрессирующий вектор, синтезируют белок и определяют его активность. Вносить изменения в клонированные гены можно также с помощью плазмид или ПЦР. Обычно заранее не известно, какую [c.175]

    Процесс биосинтеза одного антибиотика может состоять из 10-30 ферментативных реакций, так что клонирование всех генов его биосинтеза -задача не из легких. Один из подходов к выделению полного набора таких генов основан на трансформации одного или нескольких мутантных штаммов, не способных синтезировать данный антибиотик, банком клонов, созданным из хромосомной ДНК штамма дикого типа. После введения банка клонов в мутантные клетки проводят отбор трансформантов, способных синтезировать антибиотик. Затем выделяют плазмидную ДНК клона, содержагцего функциональный экспрессирующийся ген антибиотика [т. е. ген, восстанавливающий (комгглементиру-ющий) утраченную мутантным штаммом функцию], и используют ее в качестве зонда для скрининга другого банка клонов хромосомной ДНК штамма дикого типа, из которого отбирают клоны, содержащие нуклеотидные последовательности, которые перекрываются с последовательностью зонда. Таким образом идентифицируют, а затем клонируют элементы ДНК, примыкающие к комплементирующей последовательности, и воссоздают полный кластер генов биосинтеза антибиотика. Описанная процедура относится к случаю, когда эти гены сгруппированы в одном сайте хромосомной ДНК. Если же гены биосинтеза разбросаны в виде небольших кластеров по разным сайтам, то нужно иметь по крайней мере по одному мутанту на кластер, чтобы получить клоны ДНК, с помощью которых можно идентифицировать остальные гены кластеров. [c.259]


    Поскольку клонирующие векторы не содержат генов vir, они сами не способны обеспечивать транспорт и интеграцию Т-ДНК в клетки растения-хозяина. Чтобы решить эту проблему, было разработано два подхода. В первом случае используют бинарную векторную систему (рис. 17.6, А). Бинарный клонирующий вектор содержит сайты инициации репликации и для Е. соН, и для А. tumefa iens, но не несет генов vir, т. е. это практически челночный вектор Е. соН -А. tumefa iens. Все стадии клонирования прово- [c.377]

    В том случае, если в каждом праймере содержатся рестрикционные сайты, клонируют ПЦР-продукт, несущий пойманный экзон, и используют последний в качестве зонда для скрининга кДНК-библиотеки. Зная нуклеотидную последовательность пойманного экзона, предпринимают поиск гомологичных ему последовательностей в базе данных. Если есть основания полагать, что пойманный экзон с большой вероятностью является частью гена данного заболевания, то характеризуют и секвенируют геномные клоны, охватывающие место расположения данного гена, и исследуют образцы ДНК больных и здоровых индивидов с целью выявления мутаций. Поскольку мутации, ответственные за патологию, не всегда бывают равномерно распределены по всем экзонам, чем больше размер сканированной кодирующей области предполагаемого гена, тем больше вероятность обнаружения мутации. [c.476]

    Адаптер (Adaptor) 1. Синтетический двухцепочечный олигонуклеотид с одним тупым концом и одним липким. После пришивания адагггора тупым концом к ДНК-мишени последнюю можно встраивать в подходящий вектор, используя приобретенный ею липкий конец. 2. Синтетический одноцепочечный олигонуклеотид, у которого после самогибридизации появляются липкие концы и внутренний сайт для рестрицирующей эндонуклеазы. Когда адаптор встраивают в клонирующий вектор, у последнего появляется новый сайт рестрикции. [c.543]

    Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы — субтилизина они применили метод химической мо дификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность. Вообще говоря, методы химической модификации не только жестки и неспецифичны они плохи еще и тем, что с их помощью невозможно вызвать множественные желаемые изменения, особенно если модифицируемые аминокислотные остатки погружены в глубь третичной структуры белка. Для этого нужна белковая инженерия, основанная на генетической инженерии. Сегодня она осуществляется при помощи двух хорошо освоенных методов (гл. 7). Так, сайт-специфический мутагенез осуществляется следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подх.одящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти — пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов. [c.183]

    Часто природные плазмиды обладают многими, но не всеми необходимыми свойствами клонирующего вектора. В целях создания лучших векторов из исходного природного материала было разработано несколько подходов. Эти подходы могут заключаться во внесении изменений в систему контроля репликации или в добавлении в плазмиду генов, определяющих устойчивость к специфическим антибиотикам. Один из стандартных клонирующих векторов, наиболее широко используемых в настоящее время, рВЮ22, был получен путем нескольких последовательных изменений ранее существующих клонирующих векторов. Это мультикопийная плазмида, несущая гены устойчивости к тетрациклину и ампициллину и имеющая в удобных участках сайты рестрикции для нескольких рестриктаз. [c.237]

    Часто для решения этой проблемы фрагмент вектора, не несущий необходимых для жизнедеятельности фага генов, заменяют на чужеродную ДНК вместо ее простого встраивания в качестве дополнительного материала. Такой подход дал блестящие результаты в случае фага X, где путем преобразования ДНК был получен более короткий геном (содержащий только жизненно важные гены), включающий только один сайт рестрикции для рестриктазы ЕсоК1. Сам по себе этот клонирующий вектор слишком короток для его упаковки в головке фага, кото- [c.237]

    Для того чтобы синтезированная мРНК транслировалась, в непосредственной близости от инициирующего кодона AUG должен находиться участок связывания рибосомы. Были сконструированы клонирующие векторы, у которых сайт рестрикции для встраивания чужеродной ДНК находится рядом с участком связывания рибосомы. Обычно это достигается благодаря тому, что вставка содержит кодон AUG. На рис. 19.9 показано, как любая последовательность чужеродной ДНК (прокариотической или эукариотической), начинающаяся с кодона AUG, может быть встроена в этот участок и будет транскрибироваться и транслироваться в бактериях. В результате синтезируется белок, точно соответствующий кодирующему участку вставки. [c.245]

Рис. 9.11. Физическая карта клонирующей плазмиды pBR322. Эта плазмида сконструирована из трех частей. Участок начала репликации (оп )-из плазмиды рМВ1 ген tet-из плазмиды pS lOl, а ген атр-яз транспозона ТпЗ. Указаны соответствующие уникальные сайты рестрикции. Рис. 9.11. <a href="/info/100450">Физическая карта</a> клонирующей плазмиды pBR322. Эта <a href="/info/1384511">плазмида сконструирована</a> из трех частей. Участок <a href="/info/567494">начала репликации</a> (оп )-из плазмиды рМВ1 ген tet-из плазмиды pS lOl, а ген атр-яз транспозона ТпЗ. Указаны соответствующие уникальные сайты рестрикции.
    Экспериментальные данные о процессах перегруппировки генов, кодирующих константные и вариабельные участки иммуноглобулиновых цепей, были получены с помощью методов, основанных на применении рекомбинантных ДНК. Для этого из фракции полисом выделяли мРНК, кодирующую L-цепь миеломы, на ее основе с помощью обратной транскриптазы получали кДНК, которую клонировали на плазмид-ном векторе. Наработанную в значительных количествах клонированную кДНК расщепляли подходящей рестриктазой таким образом, чтобы получить два фрагмента, соответствующих V- и С-участкам L-цепи. Фрагменты ДНК разделяли препаративно с помощью электрофореза, вводили радиоактивную метку с помощью ник-трансляции, денатурировали и использовали в качестве зондов для идентификации фрагментов рестрикции ДНК из миеломных или эмбриональных клеток, содержащих последовательности, комплементарные последовательностям зондов. Наиболее существенно, что, как показано на рис. 16.22, в ДНК клеток миеломы оба V- и С-кодирующих участка локализуются на одном и том же со RI-фрагменте, в то время как в эмбриональной ДНК они находятся на различных Есо RI-фрагментах. Это означает, что на каком-то этапе развития между эмбриональной клеткой и дифференцированным лимфоцитом происходит специфическая перестройка ДНК, которая в данном случае привела к удалению Есо RI-сайта (или сайтов), находившегося в рамках протяженной области ДНК между V- и С-ко-дирующим участками в эмбриональной ДНК. После такой перестройки эти участки оказались расположенными в непосредственной близости друг к другу. Комбинация генов L-цепи, возникшая при их перегруппировке в ходе дифференциации лимфоцита, при его последующем митотическом делении устойчиво наследуется дочерними клетками. [c.241]

    Энхансер Р-глобина курицы расположен позади транскрипционной единицы Р-глобина. В последовательных поколениях эритроцитов (и только в них), он образует гиперчувствительный к нуклеазе сайт. Этот факт свидетельствует о том, что в эритроцитах с энхансером связаны белки-регуляторы. Для того чтобы ггдентифицировать их, следует определить, какая именно последовательность нуклеотидов необходима для проявления активности энхансера. Для этого мутантные последовательности энхансера объединяли с маркерным геном. Продукт такого гена легко определить это дает возможность судить о влиянии любой мутации энхансера на транскрипцию каждую рекомбинантную конструкцию вводили в эритроциты курицы и регистрировали эффективность экспрессии гена-маркера (рис 10-20). Те нуклеотиды, которые при таком тестировании оказываются необходимыми для активности энхансера, можно считать участками связывания специфических белков. С помогцью данной методики было установлено, что тагсих белков-три (рис. 10-21). Содержание каждого из них в клетке очень мало, но благодаря гому, что сайты их связывания известны, можно клонировать кодируюгпие последовательности ДНК и, следовательно, получать эти регуляторные белки в неограниченном количестве (см. разд. 9.1.7). [c.193]


Смотреть страницы где упоминается термин Клонируемые сайты: [c.108]    [c.145]    [c.108]    [c.145]    [c.103]    [c.73]    [c.74]    [c.87]    [c.139]    [c.150]    [c.379]    [c.379]    [c.390]    [c.391]    [c.393]    [c.398]    [c.411]    [c.475]    [c.373]    [c.200]    [c.245]    [c.477]    [c.292]    [c.292]    [c.57]    [c.97]    [c.225]   
Новое в клонировании ДНК Методы (1989) -- [ c.16 ]




ПОИСК







© 2024 chem21.info Реклама на сайте