Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катион определение с помощью фосфатов

    А. Определение катионов с помощью фосфата (- Р) [c.540]

    Удаление мешающих катионов при помощи катионита облегчает титриметрическое и фотометрическое определение многих анионов. Так, при определении содержания фосфатов в породах, суперфосфате, стали и т. д. раствор образца после предварительного восстановления железа, ванадия и т. п. (что препятствует образованию фосфатных комплексов) пропускают через катионит в Н+-форме. Вымытую из смолы фосфорную кислоту затем титруют основанием или каким-либо специфическим титрантом на фосфат-ионы малые количества фосфата определяют колориметрически. [c.487]


    Хлорид не мешает определению до концентрации 100 мкг/мл. При содержании фосфата выше 1 мкг/мл необходимо проводить дистилляцию фтора. Железо мешает при концентрации выше 0,5 мкг/мл. В связи с этим необходимо удалять все катионы при помощи ионообменной смолы. [c.301]

    Отделение катионов от фосфат-анионов может быть достигнуто и с помощью катионита, например, сульфокатионита КУ-2 в Н-форме. В этом случае после разделения колонку промывают водой и обрабатывают 3—4 н. соляной кислотой для получения раствора, не содержащего анионов, мешающих определению.. [c.140]

    Влияние анионов на фотометрическое определение. В ряде случаев анализируемые растворы содержат анионы, которые мешают определению того или другого катиона. Иногда при переведении в раствор анализируемого материала необходимо вводить анионы, которые мешают дальнейшему фотометрическому анализу. В качестве примера можно привести определение железа (например, при помощи роданида) в присутствии хлоридов, фосфатов или фторидов. В первом случае железо образует малопрочное соединение желтого цвета во втором случае — более прочный бесцветный комплекс Ре(Р04)2 или Ре(Р04) , а в третьем случае — очень прочный фторидный комплекс. [c.97]

    Исторически изучение аналитически важных реакций шло не на основании периодического закона, а эмпирическим путем. При этом было установлено, что некоторые реакции характерны только для ионов данного химического состава. Прн помощи этих реакций можно доказать присутствие или отсутствие в исследуемом веществе какого-либо определенного иона. Такие реакции называются специфическими. Так, катионы меди дают цветную реакцию (синее окрашивание) с избытком гидроокиси аммония, фосфат-ионы образуют характерный кристаллический осадок с магнезиальной смесью ( 111). [c.10]

    Мешающие вещества. Определению мещают фториды, фосфаты и особенно кремнефториды, которые связывают барий и приводят к получению завышенных результатов. Однако если проводить реакцию при pH = 2, вредное влияние указанных ионов значительно уменьщается. Определению мешают также ионы кальция, свинца, меди, цинка, алюминия, железа и некоторые другие катионы, которые должны быть отделены. Отделение мешающих катионов обычно проводят с помощью катионитов в Н-форме. [c.207]

    Водные растворы нитратов и нитритов также могут быть проанализированы с помощью ИК-спектроскопии [1018, 1363] при концентрации 10—50 мг мл. Ошибка определения 3%. Определению не мешают катионы металлов, но мешают большинство органических соединений, бораты, карбонаты, фосфаты, перхлораты, аммонийные соли, поглощающие в той же области длин волн. [c.131]


    Определение констант равновесия и коэффициентов активности. Катиониты используются [481—484] для определения констант равновесной диссоциации комплексных соединений стронция с лимонной и винной кис.лотами. Для этого сравнивают равновесие ионита со стронцием в присутствии цитратов и тартратов с обменным равновесием полностью диссоциированных солей стронция. Этот метод было предложено использовать для определения состава комплексных фосфатов железа [465] и для исследования состава хромовых дубильных жидкостей [4, 5, 216, 217, 489, 535]. Прп этом при помощи анионитов и катионитов пытались определить относительное содержание анионного, катионного и нейтрального хрома. Однако этому методу присущи значительные ошибки, так как при контакте с ионитами равновесие между различными формами хрома нарушается. Такой же способ предложен [568] для определения коэффициентов активности различных ионов. [c.131]

    В некоторых случаях в качестве стадии, предшествующей аналитическому определению, возможно, будет необходимо отделение или хотя бы очистка анионных соединений, например, со-осаждением или анионным обменом. Соосаждение как метод концентрирования следов анионов находит применение, например, при концентрировании сульфатов в виде сульфата бария на хромате бария, фосфатов в виде фосфата алюминия на гидроокиси алюминия и сульфидов в виде сульфида цинка на гидроокиси цинка. При использовании ионного обмена для удаления мешающих катионов требуется соблюдать осторожность. Так, ион железа(П1) легко удаляется при помощи катионообменных колонок, но, будучи адсорбированным, он ведет себя как анионо-обменник и удерживает многовалентные анионы типа фосфатов. Иногда для удаления мешающих анионов используют анионообменные колонки. Целесообразно бывает изменить степень [c.273]

    Наличие ионообменных сорбентов, способных поглощать или положительно (катиониты), или отрицательно (аниониты) заряженные ионы, позволяет отделять катионы от анионов, т. е. заменять, обменивать мешающие тому или иному аналитическому определению катионы или анионы на другие. Так, широко распространено отделение катионов металлов при помощи катионитов при весовом определении фосфат- или сульфат-ионов. Ю. В. Усатенко и О. В. Даценко [16] этим способом отделяли фосфат-ионы при определении фосфора в фосфористой меди и в феррофосфоре. [c.130]

    Сурьму(У) можно определить с помощью бромистоводородной кислоты по образованию желтой окраски Многие катионы и даже некоторые анионы (например, хлориды, сульфаты и фосфаты) мешают определению. Кроме того, чувствительность этого метода низка. [c.239]

    Пламенная спектрофотометрия — быстрый и удобный метод определения щелочных и щелочноземельных металлов. Этот метод широко применяется в серийных анализах. Определениям мешают фосфаты, сульфаты и некоторые неэлектролиты. Для уменьшения ошибок, обусловленных присутствием этих веществ, можно вводить поправки в результаты анализа или добавлять некоторые вещества в раствор (ср. [216]). Лучше, однако, удалять мешающие вещества с помощью ионитов этот метод получил широкое распространение. Если помехи обусловлены только анионами с низким молекулярньш весом, то наиболее быстрое их удаление достигается с помощью анионитов. Для быстрого определения калия в удобрениях Герке с сотрудниками [67, 68] применили статический метод, причем со слабоосновным анионитом в N0 з-форме (Амберлит Ш-4В) они получили лучшие результаты, чем с сильноосновными анионитами. Анализируемая проба раствора должна иметь pH около 5 (кислая реакция по метиловому красному). Раствор встряхивают с избытком анионита в течение 5—15 мин. Для более точных оиределених применяют динамический метод. Описан также метод определения натрия, калия, магния и кальция в пищевых продуктах после мокрого сжигания [184]. Другие применения анионообменного метода связаны с определением натрия в минеральных водах [92], кальция в растительных веществах [3, 45, 159], стронция в моче после осаждения родизонатом [83] и способных к обмену катионов в почвах ]163]. [c.263]

    Заслуживает упоминания метод определения очень малых количеств берил,лия (0,1 мкг и менее) в костях, предложенный Торибара и Шерманом [208]. После сухого озоления пробу растворяют в разбавленной соляной кислоте и удаляют большую часть кальция осаждением в виде сульфата. Фильтрат разбавляют так, чтобы его кислотность составляла 0,5 п., и пропускают через сульфокатионит в Н-форме. Бериллий полностью поглощается катионитом после промывки его элюируют вместе с другими катионами с помощью ЬМ HG1. Необходимо иметь в виду, что в присутствии фосфата поглощение бериллия протекает количественно только в кислой среде. При pH 5 большая часть бериллия (в случае присутствия фосфата) проходит в вытекающий раствор. [c.266]


    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Этот метод был применен для анализа фосфорсодержащих моющих средств после отделения катионов с помощью ионного обмена. Ошибка определения фосфора в материалах, содержащих до 20% фосфата (в пересчете на Р2О5), составляет 2—4%. Метод прост и экспрессен. При автоматической регистрации полосы эмиссии НРО в узкой полосе спектра чувствительность метода снижается. Метод был существенно улучшен [164] за счет использования модифицированного фотометра, содержащего широкополосный фильтр и усовершенствованную горелку. Нижний предел определения фосфора снижен в 100 раз до 0,007 ррт, метод применен для определения фосфора в органических веществах и воде после отделения катионов с помощью ионного обмена. [c.466]

    Прежде всего сказывается влияние посторонних электролитов в растворе, которые вызывают деформацию электронных оболочек образующегося окрашенного соединения, в результате чего меняется его светопоглощаемость. Поэтому наиболее точные результаты анализа получаются в том случае, когда посторонние ионы или удаляют, или делают приблизительно одинаковыми концентрации их в исследуемом и стандартном (образцовом) растворах. Так, например, для повышения точности и воспроизводимости результатов анализа при определении фосфатов из исследуемого раствора удаляют катионы при помощи ионообменной смолы (катионита КУ-2). [c.62]

    Эриохромчерный Т [1-(1-окси-2-нафтилазо)-6 -нитро-2 -нафтол-4 -сульфокислоты натриевая соль черный ализарин хромовый РТ черный эриохромовый Т супра кислотный хром черный специальный солохромовый черный Т хромоген черный ЕТ-00] впервые применен для этой цели [1121]. Косвенному комп-лексонометрическому определению сульфатов с эриохромчерным Т посвящено большое число работ. Все они сводятся к осаждению сульфатов свинца или бария, после чего комплексонометрически определяют количество o aждeннoгo или оставшегося в фильтрате элемента. Иногда после растворения сульфата бария в избытке комплексона III последний оттитровывают солью магния [583, 587, 718,760,830,912, 1237]. Влияние катионов устраняют предварительным катионированием пробы, либо сорбцией сульфат-ионов на AljOg. Влияние фосфатов и других анионов устраняют осаждением или с помощью анионита, борат-ионы удаляют в виде метил-бората. [c.89]

    Общие реакции — реакции, аналитические сигналы которых одинаковы для многих ионов. Применяемый реагент также называют общим. При анализе смеси катионов в качестве общих реакций используют осаждение гидроксидов, карбонатов, сульфатов, сульфидов и т. д. Полученные осадки обладают различной растворимостью в кислотах, основаниях, растворах аммиака. На основании этих свойств можно создать определенные условия (pH среды, присутствие солей аммония), когда с помощью данного общего реагента осаждаются только некоторые ионы. В этом случае общий реагент становится групповым. Например, осадки фосфатов образуют подавляющее больши ство катионов (поэтому фосфат аммония является общим реагентом), но фосфаты ряда катионов растворимы в растворе аммиака с образованием аммиакатов (растворимых комплексов). Поэтому фосфат аммония в присутствии NH3-H2O осаждает определенную группу катионов (Ва +, 5г +, Са +, Mg +, Fe +, Fe +, А1 +, Сг +, Bi +) и из общего реагента становится групповым, а реакцию называют групповой. [c.110]

    Анионный обмен нецелесообразно применять для таких определений, которые могут быть выполнены катионообменным методом, изложенным в предыдущем разделе. В тех случаях, однако, когда применение катионитов наталкивается на затруднения, метод анионного обмена приобретает значительный интерес. В качестве примера можно назвать растворы, в которых соответствующие анионам кислоты неустойчивы или почти нерастворимы. Анионообменный метод может находить практическое применение также при анализе растворов, в которых соответствующие анионам кислоты трудно точно определить путем титрования. Очевидно, таким образом, что катионообменные и анионообменные методы дополняют друг друга. Выбор ежду ними обычно достаточно прост. Например, растворы, содержащие сульфаты или нитраты щелочных металлов, удобнее анализировать с помощью катионитов. Если в растворе присутствуют катионы, образующие нерастворимые гидроокиси, например, магний или железо, то общая солевая концентрация может быть онределена только катионообменным методом. Применение анионитов в этом случае невозможно. С другой стороны, для анализа растворов фосфатов щелочных металлов следует предпочесть метод анионного обмена, так как при использовании катионитов трудно точно определить эквивалентную точку нри титровании (если не применять выпаривание значительного объема воды). Для сульфитов щелочных металлов анионообменный метод определения таюке более прост. Для некоторых растворов (в частности, содержащих ванадаты щелочных металлов) катионообменный метод неприменим, в то время как анионообменный метод дает вполне удовлетворительные результаты. [c.238]

    В заключение следует остановиться на катионитах с карбоксильными группами [48 ] и на хелатных катионитах, которые также применяются для разделения металлов рассматриваемых групп. Известен метод разделения кобальта и никеля с помощью хелатных катионитов [18] следует, однако, иметь в виду, что разделение этих металлов легко и точно осуществляется с помощью анионитов в солянокислой среде. Тем не менее, использование халатных катионитов имеет определенные преимущества в тех случаях, когде анализируемый раствор содержит анионы или неэлектролиты, мешающие определению этих металлов. Практическим примером может служить активационный анализ следовых количеств металлов (марганца, меди и никеля) в три(поли)фосфатах натрия [25]. Индуцированная радиоактивность натрия-24 и фосфора-32 маскирует у-сцинцияляционные пики слабо радиоактивных веществ. Анализируемый раствор при pH 5 пропускают через колонку с катионитом дауэкс А-1 в Na-форме затем колонку промывают раствором не-радиоацтивного хлорида натрия. При этом удаляются натрий-24 и фосфор-32. Двухвалентные металлы остаются в колонке поскольку радиоактивность никеля-65 слишком мала, чтобы ее можно было обнаружить в присутствии сильно радиоактивного марганца-56, последний подвергают селективному элюированию раствором, содержащим двузарядные катионы нерадиоактивпого марганца. [c.366]

    При определении многих катионов весовым, комплексометрическим или атомноабсорбционным методом мешают фосфаты. Удаление фосфатов предшествует определению кальция и магния титрованием с этилендиаминтетраацетатом [28, 291. Хинсон [30] определял кальций в растениях атомноабсорбционным методом после удаления фосфатов с помощью ионного обмена. Дэвид [31] определял подобным же образом стронций. [c.98]

    Окончательное установление первичной структуры дезоксинуклеиновых кислот связано с рядом проблем, еще труднее разрешимых, чем в случае рибонуклеиновых кислот, и достижений в этой области пока еще мало. Тем не менее достигнут некоторый успех в определении последовательности оснований в одиночной цепи олигодезоксинуклеотидов. Такие продукты распада легко получаются в результате обработки дезоксирибонуклеиновых кислот дезоксирибонуклеазами. Панкреатическая дезоксирибонуклеаза [350] (дезоксирибонуклеаза I) активна в нейтральном растворе, требует присутствия магния или некоторых других двухвалентных катионов и имеет минимальный молекулярный вес 61566 [351]. Этот фермент катализирует гидролиз ДНК до сложной смеси, из которой с помощью хроматографии на бумаге, электрофореза [352] и ионообменных методов [353] были выделены дезоксинуклеозид-5 -фосфаты ( 1 %), ряд динуклеотидов (- 16%), тринуклеотиды и более высокомолекулярные олигодезоксинуклеотиды с 5 -фосфатной группой на конце. Хотя специфичность действия дезоксирибонуклеазы I не установлена полностью, ясно, что расщепление происходит по связи —3 - О — Р. Изучение динуклеотидов, содержащих как пуриновые, так и пиримидиновые основания, указало на то, что такие соединения являются почти исключительно 5 ф—Пир—З ф—5 Пур, изомерная же последовательность 5 ф—Пур—З ф—5 Пир фактически отсутствует. Предположение, что ферментом атакуются преиму- [c.421]

    Хлорфосфоназо III предложен и как металлиндикатор при титриметрическом определении сульфат-ионов [739]. Четкий скачок наблюдается только при введении 70% ацетона и pH 1—3. В отсутствие ацетона, а также при других значениях pH переход окрасок не наблюдается. Катионы отделяют с помощью ионообменной колонки. Определению не мешают 30-кратные количества фосфатов, 10-кратные — арсенатов, 25 мг КаР, 200 мг Na l, 400 жг NH4NOз. Ошибка определения составляет 2,5%. [c.87]

    Внедрение полярографических, фотометрических, пламеинофото-метрических и других методов анализа приводит к изменению и упрощению хода полного анализа. Схемы полного анализа различных видов минерального сырья см. [12, 17, 21] о колориметрическом определении фтора см. также [20, 22, 23], бора — [12, 20, 21]. Для отделения Р04 от катионов при анализе апатита и других фосфатов, а также ВгОз при анализе растворимых боратов наиболее удобно разделение с помощью катионитов [12, 18]. (Доп. ред.)  [c.36]

    Для разделения катионов Fe(III), Mn(II), Zn(II) и u(II) в экстрактах из растений было предложено использовать смесь растворителей к-бутанол — НС1 — вода (100 23 17) [ 97]. С помощью ионообменной хроматографии необходимо предварительно отделить примеси, мешающие анализу, а именно катионы К(1), Са(П), Mg(II) и фосфаты. Пирофосфаты гидролизовали кипячением растительных проб в 0,1 н. НС1 в течение 10 мин. После высушивания образец растворяли в смеси ацетон — НС1 — вода (6 4 1) и вводили раствор в колонку с ионообменной смолой Dowex (100/200 меш), пропитанной элюентом. Через колонку пропускали три последовательные порции элюента для удаления катионов К(1), Са(П), Mg(II), затем следы этих элементов элюировали четырьмя порциями воды. Элюат из ионообменной колонки упаривали досуха в тарированной пробирке и растворяли в разбавленной НС1 (1 1). Восстановленное железо окисляли добавлением одной капли Н2О2. Для количественного определения взвешивали пробу (по разности масс пустой и заполненной пробирок). Перед нанесением образца бумагу Ватман № 1 пропитывали 2 и. раствором НС1 в течение 30 мин, отмывали водой и высушивали. После нанесения пробы лист выдерживали в парах элюента 1 ч и затем проводили разделение нисходящим методом до тех пор, пока фронт растворителя не перемещался на расстояние 30 см. Положение разделенных компонентов стандартной смеси на хроматограмме определяли по заранее известным величинам Rf или опрыскивая бумагу реактивом, состоявш.им из 0,5%-ного раствора 2-нитрозо-1-нафтол-4-сульфокислоты в 50%-ном этаноле, содержащем 4% безводного ацетата натрия. Марганец не образует окрашенного комплекса с этим реагентом, но при добавлении в стандартную смесь катиона Со(II), который имеет, такое же значение R/, зону Мп(П) можно локализовать. Полосу с разделенной стандартной смесью отрезали от листа бумаги, нейтрализовали в парах аммиака и опрыскивали проявляющим реагентом. Зоны катионов окрашивались в следующие цвета красный — Мп(И) и Со(П) (J / = 0,16) коричневый — u(II) (0,29) зеленый—Fe(III) (0,84), оранжевый — Zn(II) (0,96). -Компоненты пробы, разделенные вместе со стандартной смесью, определяли сравнением с хроматограммой стандартной смеси. Более точно местоположение зон [c.335]


Смотреть страницы где упоминается термин Катион определение с помощью фосфатов: [c.244]    [c.454]    [c.244]    [c.22]    [c.300]    [c.363]    [c.555]    [c.389]    [c.90]    [c.142]    [c.221]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катион, определение



© 2025 chem21.info Реклама на сайте