Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фураны энергия резонанса

    Пятичленные гетероциклы, тиофен, пиррол и фуран, как это следует из их энергий резонанса [c.195]

    Необходимо понять, что энергию резонанса очень трудно измерить или рассчитать. Основная сложность заключается в определении энергии гипотетических неароматических структур. Трудности возникают уже при переходе от бензола к нафталину и еш е больше возрастают для таких простых гетероциклов, как пиридин, пиррол, фуран и т. п. Поэтому нет ничего удивительного в том, что для каждого гетероцикла опубликовано большое число значений энергии резонанса. [c.12]


    По этой причине не имеет смысла приводить цифровые значения энергий резонанса разных систем вероятно, более целесообразно охарактеризовать их в следуюш их обш их словах энергия резонанса пиридина близка к энергии резонанса бензола, энергия резонанса тиофена ниже энергии резонанса бензола, затем следует энергия резонанса пиррола фуран же характеризуется самой низкой энергией резонанса среди всех гетероциклов, не имеющих заряда и содержащих один гетероатом. [c.12]

    С позиций метода валентных связей фуран рассматривается как резонансный гибрид канонических структур (1) — (5). Направление диполя в молекуле фурана (0,72 Д) в противоположность распространенным ошибочным взглядам таково, что отрицательный заряд сосредоточен на атоме кислорода, который, таким образом, индуктивно оттягивает электроны кольца. То же наблюдается в случае тиофена, но не в случае пиррола [3]. Для фурана было выполнено много расчетов по методу МО, но их результаты расходятся в широких пределах [4]. Значения энергии резонанса фурана, определенные термохимическими методами, составляют 66—96 кДж/моль [5]. Валентные углы и длины связей для тиофена, пиррола и фурана были определены методом микроволновой спектроскопии. В качестве критерия ароматичности было использовано соотношение длин 2,3- и 3,4-связей, но обоснованность этого подхода подвергалась сомнению. [c.117]

    Мы уже говорили о природе резонанса в фуране. Найденная величина энергии резонанса этого вещества, равная 24 ккал моль, хорошо согласуется с величиной 17,2 ккал/моль, найденной ранее в 3.2. Тиофен и пиррол сходны с фураном и, несомненно, их энергии резонанса не очень различны. Из приведенных данных становится ясно, какое влияние оказывают одна или две фенильные группы в индоле и карбазоле. [c.112]

    Объяснение этой непонятной аксиомы подсказывается, однако, сочетанием теории напряжения Байера с принципами резонанса. Напряжение кольца представляет собою разрушающее влияние и действует, таким образом, против стабилизирующего влияния резонанса. Резонансная энергия бензола более чем достаточна для преодоления напряжения кольца, и три электронные пары (секстет) вступают в резонанс. В циклооктатетраене копланарность восьми углеродных атомов, являющаяся необходимым условием для резонанса, ведет, очевидно, к достаточно большому напряжению кольца, чтобы преодолеть эффект резонанса поэтому ароматический октет и не разрешен. В циклопентадиене, где имеется лишь квартет электронов, возможен только ограниченный резонанс однако образование отрицательного иона создает ароматический секстет и увеличивает воз.можность резонанса. Более того, напряжение кольца в пятичленном цикле минимально. Эти соображения легко распространить на фуран, тиофен, пиридин и т. п., и при этом в каждом отдельном случае окажется, что для максимального эффекта необходим именно секстет вступающих в резонанс электронов. [c.187]


    Различие в энергиях основного состояния бензола и гипотетического неароматического циклогекса-1,3,5-триена соответствует степени стабилизации, определяемой специфицеским циклическим взаимодействием шести п-элек-тронов. Такое различие в энергии называется энергией ароматического резонанса. Очевидно, что количественное выражение энергии резонанса зависит от оценки энергии соответствующей неароматической структуры, поэтому (хотя и не только) различные значения энергии резонанса могут быть рассчитаны для различных гетероароматических систем. Однако следует заметить, что абсолютное значение энергии резонанса не такая уж важная характеристика, гораздо большее значение имеет ее относительное значение. С уверенностью можно утверждать, что резонансная энергия бициклических ароматических соединений, таких, как нафталин, значительно меньше, чем сумма энергий резонанса двух соответствующих моноциклических систем. Это означает, что в результате образования интермедиата (например, при реакции электрофильного замещения, разд. 2.2.2) потеря в энергии стабилизации меньше для бициклических систем, поскольку одно бензольное кольцо остается незатронутым в ходе реакции. Энергия резонанса пиридина того же порядка, что и энергия резонанса бензола, а энергия резонанса тиофена меньше по значению, чем энергия резонанса бензола. При переходе к пирролу и, наконец, к фурану наблюдается дополнительное уменьшение энергии стабилизации. Истинные значения энергии стабилизации для этих гетероциклических ароматических соединений варьируются в зависимости от сделанных предположений относительно энергии соответствующих им неароматиче-ских систем относительные энергии резонанса для бензола, пиридина, тиофена, пиррола и фурана равны 150, 117, 122, 90 и 68 кДж/моль соответственно. [c.17]

    На основе структуры (гл. 2, рис. 2.9) и свойств (гл.2) тиофен относят к электроноизбыточным ароматическим соединениям. Его энергия резонанса подобна таковой для пиррола и составляет половину значения энергии бензола, но в значительной степени превышает энергию резонанса фурана. Как и другие представители этой группы циклическая система тиофена оказывает т-злектронодонор-ное и а-электроноакцепторное влияние на заместители в положениях 2 и 5. (1-0рбитали атома серы, по-видимому, незначительно влияют на свойства основного состояния. Таким образом, химию тиофенов можно сравнить с химией пирролов и фуранов. [c.256]

    Склонность к реакциям присоединения тем больше, чем меньше потеря энергии при переходе от ароматического субстрата к продукту присоединения. В частности, легкость присоединения возрастает с увеличением числа аннелированных циклов. Присоединение к бензолу, нафталину и к центральному циклу антрацена влечет за собой потерю энергии резонанса (ЭР) одного бензольного кольца, но в первом случае это вся ЭР, во втором — разность между ЭР нафталина и бензола, в третьем — разность между ЭР антрацена и двух бензольных колец. Если оперировать значениями эмпирической ЭР (см,, табл. 1.4), потери энергии составляют соответственно 1,56, 1,08 и 0,5 эВ. Повышенную реакционную пособность в реакциях присоединения проявляют гетероароматические соединения с-относительно низкой степенью ароматичности, например фуран или пирон-2. - [c.477]

    Если сравнить энергию резонанса бензола (39 ккал) и фурана (23 ккал), то мы убедимся, что фуран с этой точки зрения совсем не сверхароматичен . [c.184]

    Ввиду того что такие теоретические положения трудно проверить экспериментально, нельзя сделать определенный выбор в поль зу той или иной теории. Однако следует учесть, что тиофен обладает более высокой энергией резонанса, чем фуран и что вклад мезомерного эффекта в дипольный момент у тиофена больше, чем у фурана, хотя кислородсодержащие ациклические соединения отличаются значительно более высоким мезомерным эффектом, чем серусодержащие. Все эти факты легко объяснить наличием для тиофена. резонансной структуры в (см. выше), отражающей двойное сопряжение как с оттягиванием, так и с отдачей электронов. С другой стороны, если учесть, что 1,4-дитиадиен-2,5 обладает высокой энергией резонанса несмотря на то, что его молекула не имеет плоской формы [135] и что отсутствие плоскостной структуры не влияет на резонанс с участием Зй -орбиталей, можно считать, что [c.147]

    Как мы видели, тиофен более ароматичен, чем фуран. Это проявляется в большей устойчивости тиофенового цикла, в замаскированности характерных свойств двойных связей, в большей энергии резонанса. В свою очередь в фуране ярче проявляются свойства диена. Возможно, что такая разница объясняется отчасти повышенной электроотрицательностью кислорода по сравнению с серой и, как следствие, меньшей способностью отдавать пару электронов для создания ароматического секстета электронов и разной степенью р- и 5-характера свободных пар электронов в О и 5. [c.266]



Смотреть страницы где упоминается термин Фураны энергия резонанса: [c.69]    [c.231]    [c.400]    [c.228]    [c.286]    [c.162]    [c.510]    [c.244]   
Основы химии гетероциклических соединений (1975) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс энергия

Фуран



© 2024 chem21.info Реклама на сайте