Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трипсин активность

Рис. 47. Активность фермента трипсина различных животных в зависимости от температуры Рис. 47. <a href="/info/5968">Активность фермента</a> трипсина <a href="/info/1852165">различных животных</a> в зависимости от температуры

Рис. 117. Определение температуры конформационного перехода активного центра а-трипсина по температурной зависимости эффективной константы скорости ультразвуковой инактивации фермента Рис. 117. <a href="/info/14234">Определение температуры</a> <a href="/info/283300">конформационного перехода</a> <a href="/info/5969">активного центра</a> а-трипсина по <a href="/info/706136">температурной зависимости эффективной</a> <a href="/info/3323">константы скорости</a> ультразвуковой инактивации фермента
    Таким образом, и механизм каталитического действия, и специфичность к субстрату ферментов можно объяснить свертыванием их полипептидной цепи и положением на ней радикалов. Характер свертывания белковой цепи в трипсине показан на рис. 21-20. Этот фермент построен из одной непрерывной полипептидной цепи, включающей 223 аминокислоты. (В нумерацию аминокислот на рисунке внесены изменения-пропуски и вставки, чтобы привести ее в соответствие с нумерацией в химотрипсине и эластазе.) Молекула трипсина имеет приблизительно сферическую форму диаметром 45 А и чашевидное углубление с одной стороны для активного центра. На рис. 21-20 атомы аспарагиновой кислоты, гистидина и серина в активном центре изображены черными кружками. Подлежащая разрыву белковая цепь изображена цветными кружками с черными ободками, а стрелка указывает положение разрываемой связи. Жирные штриховые синие линии с двух концов субстрата указывают, что его цепь растягивается на значительную длину в обоих направлениях. Карман специфичности для радикала R изображен точечными синими линиями в правой нижней части рисунка, и поскольку иллюстрируемой молекулой является трипсин, в карман вставлена аргининовая боковая цепь, притягиваемая отрицательным зарядом аспарагиновой кислоты 189 в нижней части кармана. [c.323]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]


    Протеаза из сухих семян гороха была получена в очищенном виде [70] оказалось, что по своей удельной активности она близка к трипсину, имеет оптимум pH 8,0 (с казеином в качестве субстрата) и не нуждается для активации в сульфгидрильных группах. Роль этой протеазы, однако, неизвестна. В семенах гороха содержится также протеаза с оптимумом pH, варьирующим от 6 до 7, в зависимости от используемого субстрата. Активность этой протеазы максимальна в развивающихся семенах [24]. В семядолях земляного ореха содержится протеаза с оптимумом pH 8,0, по специфичности сходная с трипсином. Активность этой протеазы несколько возрастает при прорастании [40]. [c.480]

    Какую роль играют гистидин и аспарагиновая кислота в активном центре фермента при расщеплении белка трипсином  [c.343]

    В таблице 12 приведена температурная зависимость эффективной константы скорости инактивации а-трипсина под действием ультразвука. Найти температуру конформационного перехода и рассчитать значения энтальпии и энтропии конформационного перехода активного центра фермента. [c.258]

    Расщепление модифицированного химотрипсина и выделение пептидов, содержащих фосфосерин, показало, что последовательности асп— сер — гли — глу — ала — вал и гли — асп — сер — гли — гли — про — лей входят в состав активного центра. Последовательность гли—асп—сер— гли имеется в трипсине и в химотрипсине. [c.714]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Трипсин, химотрипсин и эластаза-три родственных фермента, обладающих одинаковым каталитическим механизмом, но имеющих различную избирательность к субстрату. Они воздействуют на белковую цепь субстрата, образуя ацильный промежуточный продукт между сериновым радикалом фермента и фрагментом цепи субстрата, а затем отщепляют этот фрагмент цепи с молекулой воды. Избирательность этих ферментов определяется наличием на их поверхности по соседству с активным центром кармана , в который вставляется один из радикалов субстрата, подходящий по размеру. [c.339]

    Высокореакционноспособная связь Р—Р легко участвует в реакциях замещения с нуклеофилами, например гидроксилом се-ринового остатка в активном центре протеолитических ферментов. В эту же группу ферментов входят трипсин, тромбин и суб-тилизин. [c.219]

    Эти реакции напоминают переацилирование, при котором синтезированный акцептор обладает некоторыми свойствами трипсина (узнает NHз-гpyппy) и папаина (имеет остаток цистеина в активном центре). [c.277]

Рис. 108. Определение Л Я ионизации ионогенной группы активного центра трипсина, контролирующей реакцию гидролиза л-нитроанилида N-бензоил-Л-аргинина (по данным А. А. Клёсова и В. К. Рис. 108. Определение Л Я ионизации ионогенной <a href="/info/1376395">группы активного центра</a> трипсина, <a href="/info/96535">контролирующей реакцию</a> гидролиза л-нитроанилида N-бензоил-Л-аргинина (по данным А. А. Клёсова и В. К.
    Ферменты, гидролизующие амидные и эфирные связи, можно разделить на три класса 1) требующие для каталитической активности наличия тиольной группы, такие, как папаии, фицин и другие растительные ферменты, 2) ингибируемые диизопропил-фторфосфатом (ДФФ), такие, как а-химотрипсин, трипсин, [c.343]

    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]


Рис. 11. Схематическое изображение взаимодействия пептидных субстратов с сериновыми про-теазами, активный центр которых состоит из пространственно разделенных сорбционного и каталитического участков а— я-тимотрипсии б — эластаза в — трипсин Рис. 11. <a href="/info/376711">Схематическое изображение</a> <a href="/info/1568937">взаимодействия пептидных</a> субстратов с сериновыми про-теазами, <a href="/info/5969">активный центр</a> <a href="/info/947978">которых состоит</a> из <a href="/info/147205">пространственно разделенных</a> сорбционного и каталитического участков а— я-тимотрипсии б — эластаза в — трипсин
    Протеазы. Яды гремучих змей и гадюк в отличие от элапид и морских змей характеризуются высоким содержанием термолабильных кислых протеаз (Jimenez-Porras, 1970). Протеазы змеиных ядов активно расщепляют как природные (казеин, гемоглобин, желатин), так и синтетические (ТАМЕ и ВАЕЕ) белковые субстраты (Д. Н. Сахибов с соавт., 1972). Следует отметить, что использование синтетических субстратов позволило Tu et al. (1965, 1966) показать, что яды гадюковых и гремучих змей гидролизовали специфичные для трипсина субстраты (ТАМЕ и ВАЕЕ), но на последний действовали активнее трипсина. Почти все указанные яды не действовали на субстраты, специфичные для химотрипсина. [c.86]

    Другой фермент — трипсин — эффективно катализирует гидролиз метиловых эфиров К-ацетилзамещенных -аминокислот типа НСН(МНС0СНз)С(0)0СНз также за счет сорбции гидрофобной субстратной группы Н на активном центре. Сравним кинетические харак- [c.44]

    Известно, что в промышленном препарате а-химотрипсина обычно содержится примесь трипсина, причем оба этих фермента способны катализировать гидролиз этилового эфира Ы-бензоил-аргинина. Исходя из данных табл. 17, определить процентное содержание активного трипсина в препарате а-химотрипсина, если Б отдельном эксперименте найдено, что для гидролиза этилового эфира Ы-бензол-Ь-аргинина, катализируемого трипсином, Кт(клж) = = 4-10 М йкат = 29,6 сек" . [c.125]

    В таблице 13 приведены температурные зависимости инактивации р- и у-трипсина под действием ультразвука. Найти значения температуры конформационяых переходов активных центров обоих ферментов и вычислить значения энтальпии и энтропии конформацнонных переходов. [c.258]

    Клибанов A. М., Казанская Н. Ф., Ларионова Н, И. и др. Сравнительное исследование динамической структуры активных центров протеолитических ферментов ультразвуковым методом. Воздействие ультразвука на а-трипсин, р-трипсин и трипсиноген. — Биоорг. химия, 1976, т. 2, № 6, с. 828—836. [c.206]

    У простых ферментов активные центры образуются за счет своеобразного расположения аминокислотных остатков в структуре белковой молекулы. К таким аминокислотным остаткам следует отнести 5Н-группы цистеина ОН-группы серина — МН-группы кольца имидазола в гистидине, а также некоторое значение придается карбоксильным группам аспарагиновой и глутаминовой аминокислот, индольной группе триптофана и др. Хотя вопрос о природе и механизме действия активных центров представляет большой интерес, но, к сожалению, наши сведения об этом являются пока ограниченными. Выяснено, что количество активных центров в ферментах, как правило, очень ограничено так, например, большинство ферментов имеют от 1 (трипсин, химотрипсин, карбокси-полипептидаза и др.) до 3—4 (уреаза) активных центров, и только отдельные ферменты содержат их в больших количествах (от 20 до 100 содержится в холинэстеразе и др.). [c.106]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    A. Ахунову и Д. H. Сахибову (1963, 1970) удалось получить гомогенную протекназу из яда гюрзы, причем, на последней стадии очистки (сефадекс Г-75 и ДЕАЕ-целлвдлоза) фермент обладал активностью, в 18 раз превышающий активность протеиназ цельного яда. Молекулярный вес энзима при гель-фильтрации через сефадекс Г-100 35000—37000. Полученный фермент по своим свойствам близок к трипсину, причем подавление его активности ДФФ (5.10 Щ) указывает на важную роль серина в механизме действия энзима. [c.87]

    Следует отметить, что трипсин (или другие протеолитические ферменты) целесообразно использовать прн отравлении ядами элапнд, поскольку при поражении ядами гадюк (характеризующимися высокой протеа -ной активностью) он. может усугубить тяжесть местной картины отравления. [c.219]


Смотреть страницы где упоминается термин Трипсин активность: [c.541]    [c.181]    [c.261]    [c.219]    [c.224]    [c.225]    [c.449]    [c.398]    [c.45]    [c.140]    [c.158]    [c.142]    [c.702]    [c.713]    [c.714]    [c.87]    [c.99]    [c.244]    [c.249]    [c.483]    [c.594]    [c.355]    [c.291]   
Химия протеолиза Изд.2 (1991) -- [ c.7 , c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Определение протеолитической активности трипсина

Трипсин

Трипсин активный центр

Трипсин определение активности

Трипсин, комплекс с ДНР, ингибитор иммобилизованный, титрование активного центра



© 2025 chem21.info Реклама на сайте