Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серин группы

    При изучении химической структуры биологически активных белков, например ферментов, важное значение имеет определение различных функциональных групп белковой молекулы 5Н-групп, ОН-групп серина и треонина, е-ННз-группы лизина, имидазольного цикла гистидина и др. [c.123]

    ФОСФОПРОТЕИДЫ (фосфопротеины), сложные белки, содержащие остатки фосфорной к-ты, присоединенные, как правило, фосфоэфирной связью к остаткам a-aMHHO- -окси-кислоты— серина (фосфосерин) или треонина (фосфотрео-нин). Образуются в результате катализируемого ферментом протеинкиназой переноса фосфата АТФ на гидроксильную группу к-ты в уже сформированной молекуле белка. Образование Ф. и их расщепление ферментом ФП-фосфа-тазой играют большую роль в гормональной регуляции активности мн. ферментов, напр, гликоген-синтетазы и глико-ген-фосфорилазы. [c.628]


    Р-Углеродная группа серина может участвовать во многих биохимических синтезах, будучи донором одноуглеродного фрагмента. Оксиметильная группа серина переносится на тетрагидрофолиевую кислоту (ТГФК) с образованием оксиметил-ТГФК, которая играет роль активного формальдегида , легко отдавая одноуглеродный остаток другим метаболитам [c.257]

    Химический механизм реакций гидролиза, катализируемых химотрипсином. При гидролизе молекулы субстрата, сорбированной на активном центре, в роли атакующего нуклеофила выступает ОН-группа 5ег-195 [2, 6—9, 32]. Химика-органика, малознакомого со спецификой реакций, протекающих с участием белков, могло бы насторожить то, что нуклеофильность гидроксила серина в модельных низкомолекулярных соединениях низка, поскольку при физиологических значениях pH 7—8 группа ОН слабо ионизована (рКа 13,6) [33, 34]. В связи с этим укажем, что исключительно высокая активность 8ег-195 связана именно с его окружением в активном центре. Так, в среде 8 М мочевины (при денатурации белка) он теряет свои уникальные свойства [35, 36]. [c.129]

    Рентгеноструктурные исследования показали, что помимо серина-195 в активный центр входят также остатки гистидина (Н1з-57) и аспарагиновой кислоты (А5р-102). Другой остаток гистидина (Н1з-40) не участвует в катализе. Фермент обладает специфичностью к ароматическим аминокислотам. Эфиры ароматических аминокислот — хорошие субстраты этого фермента, и для большинства кинетических исследований в качестве субстратов использовались такие эфиры. Фермент расщепляет пептиды, освобождая карбоксильную группу ароматических аминокислот. После образования комплекса Михаэлиса единственный реакционноспособный 5ег-195 вначале ацилируется, образуя ацилферментное промежуточное соединение с субстратом. Превращение комплекса Михаэлиса в ацилфермент происходит сначала путем образования тетраэдрического интермедиата (разд. 4.4.1), и наконец происходит гидролиз ацилфермента при атаке молекулой воды, так что ацилированный продукт обычно не накапливается. [c.220]

    Ориентация карбоксильной группы, таким образом, определяется здесь структурой связывающего центра [301]. Это демонстрирует также важную роль витаминов, поскольку избыток глицина и серина в системе может оказывать токсичное действие, если витамин Вб присутствует в недостаточном количестве. [c.440]

    Опорой ДЛЯ определения конфигураций соединений с аминогруппой у асимметрического центра может служить доказанная рентгенографическим методом абсолютная конфигурация природного (правовращающего) аланина (см. стр. 186). Например, в 1907 г. Э. Фишер действием пятихлористого фосфора заменил гидроксильную группу (—)-серина на атом хлора и этот промежуточный продукт далее восстановил в (И-)-аланин, а действием Ва(ЗН)2 превратил в (—)-цистеин. Это позволяет для названных аминокислот написать следующие проекционные формулы  [c.192]


    Аргументом в пользу орбитального управления Сторм и Кошланд [18] считают, что в ряду соединений XI—XIV при замене атома О на 8 происходит сильное изменение порядка расположения этих соединений по их реакционной способности. Относительные скорости образования соответствующих тиолакто-нов XI XII XIII XIV = 70 115 2,5- 10 427 (ср. с данными табл. 13). В ферментативных системах замена ОН-группы серина активного центра на 8Н-группу также приводит к значительному изменению скорости. Например, такая модификация субтилизина вызывает сильное уменьшение активности фермента [22]. Подобные аргументы, однако, нельзя считать вполне обоснованными. Замена О на 5 сопровождается не только небольшими изменениями в геометрии системы (что считается в [18] основным следствием такой замены), но также значительными изменениями в электронном строении. Известно, например, что [c.79]

    По всей вероятности, и гидроксильные группы а-амино- 3-окси-кислот (НО—СНа—СН(МНа)—СООН—серин 1 также принимают какое-то участие в образовании цепей по типу сложных эфиров. Однако это до сих пор в полной мере еще не доказано. [c.395]

    Оксиметнльная группа рКа 15) не диссоциирует при обычных физиологических условиях. Однако серин играет важную роль в ряде биохимических реакций благодаря способности своей первичной гидроксильной группы выступать при определенных условиях в роли нуклеофила. [c.29]

    Эффективность ферментативного катализа просто завораживает, особенно если удается получить кристаллографические данные о структуре и имеются достаточно полные физико-химические сведения о ферментативном механизме действия. В этом отношении наиболее изучен фермент группы сериновых протеаз— а-химотрипснн. Термин сериновая протеаза своим происхождением обязан тому, что ферменты этого класса содержат в активном центре гидроксильную группу серина, которая проявляет необычную реакционную способность к необратимому ингибитору — динзопропилфторфосфату (ДФФ). [c.219]

    Спрятанная группа Asp-102 вызывает поляризацию ими-дазольного кольца, так как такой спрятанный отрицательный заряд приводит к появлению в соседнем положении положительного заряда. Это позволяет протону мигрировать вдоль водородных связей, так что протон гидроксильной группы Ser-195 способен перейти к His-57. Активный остаток серина превращается в реакцнонноспособный нуклеофил, который может атаковать расщепляемую пептидную связь. [c.221]

    Впоследствии Комияма и Бендер [92] выдвинули предположение, что протон, оторванный от гидроксильной группы серина имидазольной группой гистидина, переходит к атому азота уходящей группы амида, прежде чем завершается образование связи между карбонильным углеродным атомом амида и атакующим атомом кислорода серина. [c.224]

    Конечно, действие гидроксильной группы при катализе в определенной степе1ш аналогично функции остатка серина в сериновых протеазах. Поэтому были синтезированы и исследованы модельные соединения. [c.231]

    Согласно представлениям, которые сложились в гомогенном катализе, к каталитически активным радикалам бёлка относятся нуклеофильные группы (такие как имидазол гистидина, оксигруппы серина или тирозина, тиоловые группы цистеина, е-аминогруппы лизина, ионизованные карбоксилы аспарагиновой и глутаминовой кислот и др.) и электрофилы (ион имидазолия, неионизованные карбоксильные группы, ионы металлов и т. п.). В первичной структуре молекулы фермента группы активного центра обычно удалены друг от друга (см. рис. 1). Однако в третичной структуре аминокислотные остатки, принимающие участие в катализе, некоторым образом фиксированы [c.17]

    В образовании сложного нуклеофила, обладающего высокой степенью эффективности действия, принимает участие наряду с 8ег-1.95 также и имидазольная Труппа Н18-57 (см. [2, 6—9, 16]). При этом атом азота N"2 гистидина образует водородную связь с кислородом гидроксила серина (рис. 31). Вторая водородная связь, как полагают Блоу и др. [37], существуех между атомом азота № гистидина-57 и карбоксильной группой остатка Азр-102, расположенного В глубине ферментной глобулы. Система водородных связей приводит к увеличению отрицательного заряда на гидроксильной группе 8ег-195, что способствует усилению ее нуклеофильности. [c.129]

    Расщепление рацемических аминокислот на антиподы через их Ы-ацильные производные впервые использовал в своих классических работах Э. Фишер. Еще в конце прошлого века он получил этим путем 1-аланин, а затем и многие другие оптически активные аминокислоты, входящие в состав белковых веществ. Фишер особенно часто пользовался бензоильной или формильной защитой аминогруппы. Многие расщепления аминокислот проведены, однако, и с использованием иных защитных групп — ацетильной, п-нитробензоиль-ной, тозильной и других. Так, тозильную защиту использовали в одной из работ по расщеплению серина фталильную — при расщеплении а-аминомасляной кислоты с использованием эфедрина в качестве оптически активного основания п-нитро-фенилсульфенильную защиту — при расщеплении фенилгли-цина, фенилаланина, пролина с эфедрином, псевдоэфедрином или основанием левомицетина в качестве оптически активных оснований. При расщеплении многих рацемических аминокислот оказалась полезной карбобензоксизащита. [c.103]


    У простых ферментов активные центры образуются за счет своеобразного расположения аминокислотных остатков в структуре белковой молекулы. К таким аминокислотным остаткам следует отнести 5Н-группы цистеина ОН-группы серина — МН-группы кольца имидазола в гистидине, а также некоторое значение придается карбоксильным группам аспарагиновой и глутаминовой аминокислот, индольной группе триптофана и др. Хотя вопрос о природе и механизме действия активных центров представляет большой интерес, но, к сожалению, наши сведения об этом являются пока ограниченными. Выяснено, что количество активных центров в ферментах, как правило, очень ограничено так, например, большинство ферментов имеют от 1 (трипсин, химотрипсин, карбокси-полипептидаза и др.) до 3—4 (уреаза) активных центров, и только отдельные ферменты содержат их в больших количествах (от 20 до 100 содержится в холинэстеразе и др.). [c.106]

    Гормои из бычьего гипофиза (Рб-МСГ) отличается от свиного гормона (р-МСГ) тем, что в нем вторая аминокислота (глутаминовая) замещена на серин. Синтетический Рб-МСГ, несущий в молекуле шесть защитных групп, при испытании на коже лягушки показывает активность 1,4-10 ед г по сравнению с 1,2-10 ед/г для Рб МСГ (Швайцер, 1959). Синтетичес <ий 8—13 гексапептид имеет активность только 2-10 ед г ((Кдапелер, 1961). [c.700]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    Эти яды имеют больщое сродство к остаткам серина (его гидроксилу) и аспарагиновой кислоты (ее свободной карбоксильной группе), находящимся в активном центре холинэстеразы. Ингибированный таким образом фермент перестает перерабатывать нейромедиатор, что приводит к перевозбуждению хо-линорецепторов и нервной системы из-за резкого повыщения концентраций ацетилхолина. Антидоты действуют по принципу фармакологического антагонизма они деблокируют фермент холинэстеразу за счет их более прочного взаимодействия с фос-форорганическим ядом (рис. 6). [c.122]

    Наши исследования (совместно с М. Ф. Шаховой) методами хроматографии и спектрофотометрии выявили в моркови следующие биологически активные вещества каротиноиды — а- и -каротин, ликопин, полицис-ликопин, флавоксантин и тараксантин аминокислоты — лизин, орнитин, гистидин, цистеин, аспарагин, серин, треонин, пролин, метионин, тирозин, лейцин витамины группы В (холин, бетаин). [c.398]


Смотреть страницы где упоминается термин Серин группы: [c.320]    [c.131]    [c.214]    [c.250]    [c.351]    [c.35]    [c.335]    [c.94]    [c.237]    [c.652]    [c.707]    [c.101]    [c.96]    [c.545]    [c.207]    [c.302]    [c.327]    [c.355]    [c.475]    [c.588]    [c.594]    [c.628]    [c.665]    [c.687]    [c.226]    [c.151]    [c.226]   
Биохимия растений (1966) -- [ c.411 , c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Серин

Серини



© 2025 chem21.info Реклама на сайте