Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферментативные реакции скорость

Рис. 25.7. Зависимость скорости образования продукта от концентрации субстрата для типичной ферментативной реакции. Скорость образования продукта пропорциональна концентрации субстрата в области низких концентраций. При высоких концентрациях субстрата все активные центры фермента оказываются связанными в комплексы дальнейшее добавление субстрата не оказывает влияния на скорость реакции. Рис. 25.7. <a href="/info/1153507">Зависимость скорости образования</a> продукта от <a href="/info/879417">концентрации субстрата</a> для типичной <a href="/info/6306">ферментативной реакции</a>. <a href="/info/363513">Скорость образования продукта</a> <a href="/info/923168">пропорциональна концентрации</a> субстрата в <a href="/info/1117425">области низких</a> концентраций. При <a href="/info/1320639">высоких концентрациях субстрата</a> все <a href="/info/99728">активные центры фермента</a> оказываются связанными в <a href="/info/1637255">комплексы дальнейшее</a> <a href="/info/335560">добавление субстрата</a> не <a href="/info/1246563">оказывает влияния</a> на скорость реакции.

    Полное конкурентное ингибирование (а -> оо, 3 не имеет определенного смысла). В случае полного конкурентного ингибирования на-.чальная скорость ферментативной реакции определяется выражением [c.219]

    Гормоны принадлежат к различным классам органических соединений, синтезируемых в эндокринных железах или железах внутренней секреции. Это биологически активные вещества, оказывающие регуляторное влияние на обмен веществ. Это влияние проявляется разными путями гормоны могут изменять скорость ферментативных реакций, скорость синтеза белков, влиять на проницаемость клеточных мембран. [c.176]

    В случае ферментативных реакций значения энергии активации снижаются еще больше, так как процессы протекают многоступенчато, с участием нескольких катализаторов, каждый из которых проводит лишь одну стадию процесса. Это позволяет сложным ферментативным реакциям протекать с большой скоростью при [c.33]

    Для реакций, протекающих по более сложным механизмам (по сравнению с механизмом Михаэлиса—Ментен), стационарное состояние существует лишь при некоторых дополнительных условиях, определяемых соотношением констант скоростей индивидуальных стадий. Так, например, для обратимой ферментативной реакции с участием одного промежуточного соединения [c.173]

    Каким образом такое ограниченное число функциональных групп участвует в разнообразных ферментативных реакциях и каким механизмом можно объяснить огромную скорость ферментативных реакций Такие фундаментальные вопросы должны быть поставлены при проектировании биоорганической модели фермента [130]. [c.264]

    Оптимальная температура ферментативных реакций. Скорость ферментативных реакций возрастает с увеличением температуры так же, как и скорость большинства реакций между ковалентными молекулами, согласно известному закону Вант-Гоффа, а именно возрастание температуры на 10° увеличивает скорость реакции в 1,5—3 раза. Однако этот рост наблюдается лишь при сравнительно низких температурах. Выше определенной оптимальной температуры, при которой скорость максимальна, она уменьшается, а при более высоких температурах реакция прекращается. Это явление объясняется тем, что при более высоких температурах ферменты дезактивируются за счет денатурации белковой компоненты. Большинство ферментов становится совершенно неактивным в интервале 50—80°. Оптимальная температура не может быть точно определена, так как она изменяется в широких пределах с изменением концентрации фермента, концентрации ионов водорода и в зависимости от присутствия различных примесей в ферментативном препарате или субстрате. [c.794]


    Кинетика ферментативных реакций. Скорость реакций, катализируемых Ф., определенным образом завпсит от концентраций реагирующих веществ п условий среды. Характер этой зависимости определяется механизмом процесса. Общепринятым представлением об общем принципе действия Ф., независимо от конкретной природы Ф. и субстратов, является следующее. Фермент [Е] и субстрат [8] реагируют обратимо с образованием комплекса [ЕЗ], к-рый обладает более высокой реакционной способностью, чем исходный субстрат, и необратимо распадается с образованием продукта реакции (Р) и регенерацией исходного Ф. [c.207]

    Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсив- ности ферментативных реакций. Скорость последних может регулироваться двумя основными способами путем изменения. количества ферментов и/или изменения их активности, т. е. степени использования их каталитического потеициала. [c.109]

    Регистрируемой величиной в иммуноферментном анализе является концентрация продукта ферментативной реакции. Скорость его образования пропорциональна каталитической активности в системе и определяется по изменению какого-либо ее параметра [c.233]

    С другой стороны изучение ферментативных реакций в стационарном режиме имеет ряд существенных недостатков. Наиболее важным из них является то, что стационарная кинетика дает весьма ограниченную информацию о детальном кинетическом механизме ферментативной реакции. Стационарная кинетика, отражая лишь лимитирующие стадии процесса, практически не дает информации о быстрых , нелимитирующих стадиях превращения субстрата в активном центре фермента. Определение элементарных констант скорости многостадийной ферментативной реакции из данных стационарной кинетики не представ-ляется.возможным. Действительно, кинетика каталитической реакции, включающей п промежуточных соединений (схема 5.16), описывается 2 п + 1) константами скорости. Стационарная же скорость этой обратимой реакции независимо от числа промежуточных соединений, принимающих участие в механизме реакции, дается уравнением (см. гл. VI) [c.174]

    Применение катализаторов дает возможность понизить Е до значений < 170 кДж/моль. Так, при гомогенном окислении SO2 без катализатора Е > 280, на платиновом катализаторе < 70 и на ванадиевом 90 кДж/моль SO2. При окислении аммиака па платиновом катализаторе Е составляет лишь 34 кДж/моль NH3, вследствие чего общая скорость процесса определяется скоростью диффузии аммиака. и кислорода к поверхности катализатора. Для ферментативных реакций, как правило, Е = 35—50 кДж/моль. [c.22]

    Торможение некаталитической реакции малыми добавками ингибитора является характерным признаком цепного механизма реакций (в каталитических реакциях малые добавки посторонних веществ могут снижать скорость реакции в результате воздействия на катализатор, например ингибирование ферментативных реакций, гл. УП, 3). [c.280]

    Наиболее очевидный способ, с помощью которого фермент увеличивает скорость бимолекулярной реакции,— способствовать простому сближению реагирующих молекул в активном центре фермента. В этой связи возникают два важнейших вопроса во-первых, какого увеличения скорости можно ожидать при таком сближении реагентов и, во-вторых, каков механизм этого увеличения скорости. В настоящей главе мы постараемся прояснить эти вопросы. Изменение степени сольватации также способно вызвать значительный эффект увеличения скорости как в меж-молекулярных, так и в ферментативных реакциях. Неполярная внутренняя область фермента напоминает своей низкой диэлект- [c.202]

    В итоге уже сейчас накопилось Достаточно данных, из которых следует, что ферментативные реакции при всей сложности протекают в полном соответствии с общими закономерностями химических превращений [1—6], и, следовательно, некоторые общие принципы действия ферментов могут найти объяснение на основе теории абсолютных скоростей реакций [5]. [c.3]

    В случае ферментативной реакции (2.1) учтем, что стационарное состояние ее устанавливается быстро (см. гл. V). Примем также обычное для ферментативных реакций условие об избытке концентрации одного из реагентов (субстрат) по сравнению с другим (катализатор), т. е. [ру] [ЕХ] (см. гл. V и VI). Тогда для стационарной скорости реакции, протекающ,ей по ферментативному пути, имеем выражение, известное как уравнение Михаэлиса  [c.37]

    Внутримолекулярный кинетический режим способствует ускорению ферментативных реакций (см. гл. II). В связи с этим привлекают внимание исследования неферментативных внутримолекулярных реакций, где взаимодействующие функциональные группы ковалентно присоединены к одной молекуле. Значительный интерес в этих исследованиях представляет сопоставление скоростей внутри- и соответствующих межмолекулярных реакций (для оценки эффекта сближения), а также выявление специфических факторов, оказывающих влияние на собственную (внутримолекулярную) реакционную способность присоединенных функциональных групп (их взаимное расположение — эффекты ориентации, влияние заместителей или микросреды и т. д.). [c.78]


    Полное неконкурентное ингибирование (а = 1, 3 = 0). В случае полного неконкурентного ингибирования выражение для начальной скорости ферментативной реакции имеет вид [c.220]

    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    Для начальной скорости ферментативной реакции (при [8]( [Э],, [ ]()) при установившихся равновесиях справедливо  [c.219]

    Каталитическая активность ферментов проходит через максимум при изменении pH. В сильнокислых и сильнощелочных средах ферменты теряют каталитическую активность вследствие денатурации белка. В области 0- 40° С скорости реакций, катализируемых ( рмен-тами, при повыщении температуры возрастают в соответствии с уравнением Аррениуса. Энергия активации ферментативных реакций лежит в пределах 20 80 кДж/моль. При температурах 60—70 С белки денатурируются и полностью теряют каталитическую активность. [c.633]

    Максимумы в скоростях реакций могут возникать тогда, когда имеет место конкуренция за одни и те же активные центры между поверхностньши веществами, участвующими в различных маршрутах реакции. Это и наблюдается в рассмотренных здесь примерах. По-впдпмому, стадийной схемой (I) — (II) можно описать многие каталитические реакции. По такой схеме или близкой к пей могут протекать такие каталитические реакции, как, например, реакции изомеризации, парциального окисления, ферментативные реакции с различным порядком присоединения субстратов и др. При этом имеется в виду не полное количественное соответствие схем (I) — (II) каколгу-либо процессу, а качественный характер. [c.46]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Так, например, при неупругих столкновениях обшивок ракет и самолетов с молекулами воздуха, за счет накопления энергий неупругих соударений, обшивки могут оплавляться, а молекулы азота и кислорода вступать в каталитические реакции с образованием окислов азота и другие [25-27]. Поэтому, если в каталитических и ферментативных реакциях для их ускорения необходимо повышать частоту и энергию неупругих соударений, то для снижения сопротивления трения газов и жидкостей на твердой поверхности требуется снижать частоту и энергию неупругих соударений. Автором монографии разработаны и внедрены в промышленность принципиально новые и более экономически эффективные способы повышения частоты и энергии неупругих соударений реагирующих веществ с катализаторами, которые способны повышать активность всех имеющихся в мире промышленных катализаторов [17], а также экономически эффективные способы снижения частоты и энергии неупругих соударений обтекающих газов и жидкостей о твердую поверхность, в результате которых снижается сопротивление их трения до 20% , а следовательно, сокращают расход топлива на единицу мощности двигателя, также на 20% [28]. Эти же методы повышения или понижения частоты неупругих соударений можно применить и для повышения нли понижения скоростей ферментативных реакций в клетках животных и растений, так как термодесорбируемые субстраты неупруго соударяются внутренними поверхностями "кармана" (щелей) глобул ферментов, а изотермически десорбируемые субстраты (химически превращаемые вещества ферментом) неупруго соударяются с поверхностью глобул фермента [15]. Отметим, что полярные С и М-концевые и боковые группы белковой части ферментов расположены на поверхности глобул ферментов [29-31], их вращательные и колебательные движения совершаются с целью повышения частоты и энергии неупругих соударений субстратов с поверхностью глобул ферментов. Поэтому скорость ферментативных реакций в 10 " раз превышает скорости химических [29]. [c.46]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]

    Из проведенного анализа следует, что стационарная скорость реакции (6.1) при [S](, [E]q должна гиперболически зависеть от начальной концентрации субстрата и линейно от начальной концентрации фермента. Эти закономерности действительно характеризуют кинетику большинства ферментативных реакций. Дело в том, что уравнение Михаэлиса — Ментен [c.217]

    Проблемы и перспективы применения ферментов в анализе объектов окружающей среды рассмотрены в ряде обзоров [83-85 и монофафий 4,86) В принципе использование ферментативных реакций является частным случаем кинетических методов анализа, основанных на измерении скорости индикаторной каталитической реакции в присутствии различных количеств определяемых веществ Для правитьного применения 2ХХ [c.288]

    Из уравнения (2.21) видно, что термодинамически эффективность ферментативного катализа определяется разницей свободных энергий межмолекулярного (при образовании комплекса Михаэлиса) и внутримолекулярного (в переходном состоянии реакции) образования связи Е-Я. Следовательно, в количественном отношении кинетическая роль комплексообразования Е Н в ускорении ферментативной реакции представляется несколько иной, чем в кинетическом режиме второго порядка (уравнение 2.19). Однако и здесь движущей силой катализа остается свободная энергия взаимодействия Е-Н именно в переходном состоянии реакции (а не в промежуточном комплексе). Действительно, чем более термодинамически выгодным будет внутримолекулярное взаимодействие Е-К в активированном состоянии (чем более отрицательные значения примет величина АОз внутр). тем более благоприятным должно быть отношение VI/ии для ферментативной реакции [см. (2.21)]. Это связано с тем (см. рис. 12), что барьер свободной энергии активации ферментативной реакции (ДО/. внутр) в этом случае уменьшается (по сравнению с ДОи) и, следовательно, скорость процесса [уравнение (2.20)] возрастает. Наоборот, при заданном значении ДО .ппутр термодинамически более благоприятное взаимодействиеЕ -Н в исходном состоянии реакции (фермент-субстратный комплекс ХЕ-КУ) будет тормозить ее протекание. Так, более отрицательные значения Д(3 приводят к неблагоприятным значениям VI /иц в отношении ферментативного процесса [уравнение (2.21)]. Это связано с тем, что активационный барьер Д01% утр (см. рис. 12), определяющий скорость превращения фермент-субстратного комплекса [уравнение (2.20)], при этом возрастает. [c.41]

    При достаточно высоких концентрациях субстрата скорость ферментативной реакции определяется превращением промежуточного фер-мент-субстратного комплекса (уравнение 2.8). Ч.тобы оценить эффективность катализа в этих условиях, запишем на основании (2.11) соотношение скоростей ферментативной и гомогенно-каталитической реакций (2.21) в ином виде  [c.50]

    Зависимость скоростей реакций, катализируемых химотрипсином, от pH обнаруживает оптимум при pH 8. [42]. Механизм зависимости химотрипсино-. вого катализа от pH заключается в следующем [6—9, 13, 43, 44]. Эффективные константы скоростей химических стадий ферментативной реакции 2 и сохраняют постоянное значение при щелочных и нейтральных значениях pH, но при дальнейшем понижении pH они уменьшаются. Сигмоидальный характер этих зависимостей указывает на участие в катализе ионогенной группы фермента с рЛГа7. Многие годы полагали, что этой группой является имидазольный фрагмент His-57, однако позднее она была идентифицирована как карбоксил Asp-102 [45]. Ее протонизация разрушает водородные связи в составном нуклеофиле (рис. 32), что приводит к потере ферментом каталитической способности. [c.132]

    З-образный характер зависимости скорости ферментативной реакции от концентрации субстрата в катализе химотрипсином. Изменение среды в результате добавки органических соединений также оказывает заметное влияние на эффективность сорбции на активном центре химотрипсина гидрофобных компонентов реакции. Причина этого заключается, как правило, в том, что органическая добавка, повышая растворимость субстрата (или субстратоподобного ингибитора) в воде, удерживает его в водном растворе и затрудняет тем самым [c.145]

    Уравнение (4.27) означает, что величина специфического эффекта в скорости ферментативной реакции линейно возрастает с увеличением показателя гидрофобности я субстратной группы R. Это находится в резком диссонансе с данными по модельной реакции щелочного гидролиза этиловых [107—109] или л-нитрофениловых [110—112] эфиров тех же карбоновых кислот, где константа скорости второго порядка практически не зависит от длины алифатической цепи. В ферментативной же реакции с увеличением углеводородного фрагмента в субстратном остатке понижается свободная энергия активации примерно на —600 кал/моль (—2,5 кДж/моль) на каждую СНа-группу [что следует из (4.27)], если учёсть, что значение я для СНа-группы равно 0,5. Найденное значениеЛЛ <7 согласуется с величиной свободной энергии сорбции на активном центре алифатических соединений (см. 4 этой главы). [c.149]

    Исследование ферментативных реакций в предстационарном режиме нуждается в специальной экспериментальной технике, поскольку используемые методы должны иметь достаточно высокую временную разрешающую способность. Мертвое время экспериментальной методики должно быть существенно меньше времени протекания реакции в предстационарном режиме. В качестве примера рассмотрим случай реакции с участием одного промежуточного соединения. Экспериментальную методику можно считать удовлетворительной, если ее мертвое время будет меньше величины т [см. уравнение (5.109)]. Используя наиболее характерные для ферментативного катализа значения констант скоростей, можно оценить величину т. Величина константы скорости образования фермент-субстратного комплекса ( 1) для большинства ферментативных реакций лежит в диапазоне 10 —10 М" X Хс (см. гл. VII). Типичное значение Кт, характерное для многих ферментативных реакций, равно 10 М. Если положить минимальную концентрацию субстрата равной 10" М (эту концентрацию еще можно определить чувствительным спектрофотометрическим методом), зна-чениет будет лежать в диапазоне 10 —10" с. Это показывает, что для исследования предстационарной кинетики ферментативных реакций необходима специальная экспериментальная техника, позволяющая регистрировать кинетические процессы в микро- и миллисекундном временном диапазоне. [c.204]

    По методу ускоренной спгруи растворы реагирующих веществ помещают в шприцы, поршни которых приводят в движение резким толчком в течение примерно 0,1 с. Наблюдение проводят в фиксированной точке вблизи смесительной камеры при этом скорость течения жидкости (и, следовательно, время протекания реакции) постоянно меняется. Методика ускоренной струи позволяет использовать весьма малые объемы реагирующих веществ (до 0,1 мл), что является важным преимуществом при исследовании ферментативных реакций [32]. [c.205]

    Произведение alElo, имеющее размерность скорости реакции, обычно называют максимальной скоростью ферментативной реакции и обозначают V (при избытке субстрата по сравнению с константой Михаэлиса начальная скорость ферментативной реакции максимальна, г/= = V). [c.217]


Смотреть страницы где упоминается термин Ферментативные реакции скорость: [c.647]    [c.207]    [c.244]    [c.563]    [c.5]    [c.204]    [c.212]    [c.264]    [c.289]    [c.32]    [c.43]    [c.69]    [c.133]    [c.165]    [c.216]   
Химическое равновесие и скорость реакций при высоких давлениях Издание 3 (1969) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции ферментативные



© 2025 chem21.info Реклама на сайте