Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование электролитического цинка

    Начиная с первой пятилетки развитие металлургии цинка в СССР осуществляется только за счет гидроэлектрометаллургии, так как чистый электролитический цинк обладает значительно лучшей коррозионной устойчивостью, чем металлургический, а сплавы, получаемые с использованием этого цинка, значительно лучше обрабатываются и обладают повышенными механическими свойствами. [c.493]


    Электролиз хлоридных растворов может оказаться перспективным не только для цинка, но и для других процессов электролиза цветных металлов [27]. В этом случае на аноде вместо бесполезного кислорода будет выделяться хлор, который можно использовать для хлорирования продуктов, содержащих цинк, и перевода их в водорастворимую форму. Электролиз цинка из хлоридных растворов наиболее рационально сочетать с электролитическим производством хлора, расходуемого на хлорирование органических соединений. Получаемая при этом хлорировании соляная кислота может быть использована для выщелачивания цинкового концентрата, а выделяющийся при электролизе цинка хлор направлен на хлорирование органических соединений. Помимо сказанного, электролиз хлорида цинка имеет то важное преимущество, что позволяет использовать более дешевые и не загрязняющие электролит графитированные электроды, сопровождается более низким напряжением на ванне ввиду меньшей величины анодного потенциала и большей электропроводности электролита, не требует использования двуокиси марганца для окисления железа и т. д. Недостатками процесса являются усложнение конструкции и обслуживания ванн, худшее качество осадков цинка, ограниченная плотность тока. [c.71]

    Кадмиевые, оловянные или цинковые покрытия могут отделяться от основных слоев стали при использовании раствора соляной кислоты, содержащей трехокись или трихлорид сурьмы, который действует как ингибитор и приостанавливает воздействие кислоты на сталь (Английские стандарты 1706 и 1872). Кадмий можно отделить в 30%-ном растворе азотнокислого аммония, а цинк — в растворе 5 г персульфата и 10 мл гидрата окиси аммония в 90 мл воды (Английский стандарт 3382). Покрытия из сплавов олова с никелем отделяют электролитически в растворе, содержащем 20 г/л едкого натра и 30 г/л цианистого натрия, а медное покрытие — погружением в концентрированную фосфорную кислоту (Английский стандарт 3597). Серебряные покрытия вначале погружают в смесь концентрированных азотной и серной кислот в соотношении 1/19, а после потемнения— в 250 г/л раствора трехокиси хрома в концентрированной серной кислоте (Английский стандарт 2816). Основной слой отделяют от покрытия золотом путем растворения в концентрированной азотной кислоте. Отфильтрованное золото промывают, просушивают и взвешивают (Английский стандарт 4292). [c.143]

    Цинк в ряду потенциалов находится далеко от водорода его нормальный электродный потенциал равен —0,76 в. Тем не менее, даже из сильно кислых растворов, цинк можно электролитически выделить на катоде со значительным коэфициентом использования тока. Это обстоятельство определяется высоким перенапряжением для выделения водорода из цинка. Перенапряжение для водорода, в свою очередь, зависит от характера поверхности катода, от применяемой плотности тока, от концентрации ионов водорода в растворе, от коллоидных добавок и от температуры. Поэтому необходимо выбирать условия работы, при которых перенапряжение для водорода и выход по току на цинк достигают наивысшего значения. [c.12]


    В природных электролитах возможно присутствие таких микрокомпонентов, как йод, бром, медь, цинк, свинец и др. Содержание их незначительно— около 10 —10 г/л. При концентрации активного хлора в электролитическом гипохлорите 1—5 г/л и дозе хлора на обеззараживание 1—5 мг/л количество вводимых микрокомпонентов уменьшается в тысячи раз и будет составлять всего 10 —10 мг/л, т.е. значительно ниже максимально допустимого для питьевой воды уровня. Однако в каждом конкретном случае следует учитывать химический состав и содержание микрокомпонентов в природных электролитах, а для возможности использования гипохлорита натрия, полученного из минерализованных и морских вод, иметь разрешение санитарных органов. [c.24]

    Некоторые металлы, например цинк, магний и алюминий, значительно устойчивее к действию обычных коррозионных агентов (воздух, вода), чем можно было бы ожидать, судя по их высоким положительным окислительным потенциалам. Такая коррозионная устойчивость обусловлена плотным поверхностным окисным слоем, который самопроизвольно образуется на поверхности этих металлов и препятствует распространению коррозии. Пористая ржавчина, которая появляется на поверхности железа, не оказывает такого защитного действия. На алюминии, магнии и тантале эти окисные пленки были идентифицированы с помощью дифракции рентгеновских лучей и другими физическими методами. На железе и хроме образуются особенно тонкие окисные пленки. Хром покрывается на воздухе незаметной тонкой окисной пленкой, которая делает его устойчивым к действию атмосферы. Эту устойчивость, названную пассивностью, можно значительно увеличить, если деталь из хрома (или хромированную деталь, т. е. покрытую поверхностным слоем хрома путем электролитического осаждения) короткое время использовать в процессе электролиза как анод. При использовании хромированной детали короткое время в качестве катода пассивность устраняется. [c.238]

    Электролитическую очистку иногда проводят и в случае никеля. Электролизом водных растворов можно получать также и свинец, железо, цинк, олово и другие металлы, но для этих металлов электролитический метод применяется редко. Большое значение электролитические процессы имеют при покрытии менее благородных металлов более благородными, т, е. более пассивными в отношении коррозии. При никелировании в качестве электролита применяют раствор сульфата никеля с сульфатом аммония, сульфатом магния или борной кислотой. Хромирование производят в подкисленном растворе хромовой кислоты. При серебрении и золочении плотные покрытия получают только тогда, когда концентрация ионов металла ничтожно мала. Это осуществляется путем использования в качестве электролитов комплексных солей, например Na[Ag( N)2], По мере расходования ионов Ag+ из раствора при восстановлении равновесия образуются новые ионы. [c.597]

    Применение рентгеноструктурного метода исследования позволило в ряде случаев установить идентичность в строении сплавов, получаемых электролитическим и термическим путем [7], [8] в частности, это было показано для системы медь—цинк [91. В большинстве же других случаев использование этого метода привело к выявлению отклонений в положении границ областей существования той или иной фазы от данных диаграмм равновесия этих систем. [c.33]

    Токсичность, дефицитность и высокая стоимость кадмия уже давно вызывают необходимость его замены или по крайней мере снижения потребления в гальванотехнике. Одним из вариантов решения этой задачи является применение вместо кадмия цинка с хроматированием его в растворе, содержащем добавку Ликонда ЗЛ (см. гл. 16). Другим путем служит использование электролитических сплавов, в которых наиболее приемлемой легирующей добавкой, по-видимому, может быть цинк. По данным, приводимым в работе [84], коррозионные испытания в атмосфере солевого тумана образцов покрытий с различным соотношением компонентов показали, что при содержании около 40 % цинка они равноценны кадмиевым покрытиям, а при увеличении его до 80 % превышают защитную способность кадмиевых покрытий. Относительно большей стойкостью против коррозии характеризуются покрытия, содержащие 83 % d и 17 % Zn. Сплав, содержащий 90 % d и 10 % Zn, несколько лучше защищает сталь от коррозии в промышленной атмосфере, чем цинковые покрытия, и значительно лучше, чем кадмиевые. Для осаждения сплавов, содержащих 80—86 % d, 20—14% Zn и 77—92 % d, 23— [c.130]

    Использование цинка, кадмия и ртути в технике. Около 40% добываемого цинка используется на цинкование, т. е. покрытие поверхности черных металлов для защиты нх от коррозии. Сам цинк, как у.же указывалось, будучи электрохимически более активным, чем железо, к коррозии вполне. устойчив благодаря образованию на его поверхностп прочной оксидной пленки. Покрытие черных металлов цинком производится различными способами горячим цинкованием, т. е. погружением металла в расплавленный цинк распылением расплавленного циика но поверхности черного металла действием нарами цинка на поверхность черного металла электролитически. Цинковое покрытие даже в случае нарушения его целостности продолжает оказывать на железо защитное действие уже ио электрохимическому ирипиину (см. гл. XX, 12). [c.333]


    Для источников энергии одноразового действия отрицательные электроды готовят из электролитически полученной пористой цин-. ковой губки или из нескольких слоев просеченной и растянутой тонкой цинковой фольги. Цинковые электроды должны иметь большую активную поверхность, чтобы при разрядах была небольшая истинная плотность тока (плотность тока, рассчитанная не на гат баритную поверхность электрода, а на действительную поверхность цинка с учетом поверхности в порах). В противном случае цинк пассивируется, и использование его будет очень плохим. Для [c.407]

    Материал катода. Скорость и степень восстановления, а иногда и тип продукта зависят от природы материала катода. На стр. 317 указывалось, что более полное и быстрое восстановление обычно происходит на катодах с высоким перенапряжением водорода. Во многих случаях, однако, перенапряжение водорода не является решающим фактором. При электролитическом восстановлении нитробензола до анилина очень хорошие выходы получены на катоде из никелевых проволок и при использовании в качестве като- тита соляной кислоты [53]. Кадмий, цинк, свинец и ртуть являются активными катодами для восстановления метилпроиилкетона до пентана [541. Олово и алюминий, представляющие собой катоды с высоким перенапряжением водорода, практически неактивны. Бензойная кислота восстанавливается в бензиловый спирт только на катодах из свинца и кадмия 155], а К,М-диметил-валерамид восстанавливается до Ы,М-диметиламиламина только на свинце 156] (исследовано П катодов). [c.326]

    Катодный выход по току при электролитическом получении покрытий из цинк-оловянного сплава состава 80% Sn и 20% Zn при использовании станнатно-цианистого электролита (с четырехвалентным оловом) равен 82%. Сила тока на ванне 600 А. Аноды раздельные — оловянные и цинковые. Анодные выходы по току у цинка 100%, у олова 78%. [c.215]

    Цинк. Впервые цинк высокой чистоты был получен в 1942 г. В л. Д. Пономаревым который предложил для этой цели две конструкции электролизеров с промежуточным биполярным амальгамным электродом. Анодом в электролизерах служил твердый цинк, катодом — листовой алюминий в качестве электролита был использован раствор сульфата цинка. Процесс очистки цинка в этих электролизерах заключался в электролитическом переосажде-нии цинка двойным электролизом с промежуточным амальгамным электродом. Вл. Д. Пономарев получил при этом химически чистый цинк без мышьяка и других металлов-примесей, однако из-за малых количеств примесей количественно определить их содержание в цинке ему не удалось. [c.222]

    Описан электролитический метод получения чистого германия [125] с использованием германиевого анода и алкилыгых соединений цинка или алюминия в качестве электролитов, к которым для обеспечения электропроводности добавляют галогенид щелочного металла. Катодом служит стержень, изготовленный из того же металла, что и металл алкильного соединения, используемого в качестве электролита. В результате электролиза при напряжении 1 в на аноде образуется алкилытое соединение германия, а цинк или. алюминий выделяется на катоде. Далее алкильное соединение германия отделяют экстракцией или дистилляцией и разлагают до металла. [c.382]

    При электролитическом восстановлении нитробензола в нейтральной среде образуется с хорошим выходом нитрозобензол 159]. Малые выходы продуктов дезоксигенирования получают ири использовании окиси бария 160] и ири восстановлении гидроксиламинов в метаноле 161] или при использовании таких солей металлов, как хлористая ртуть, хлористый цинк 162], бисульфит натрия [163]. В последнем случае при восстановительном сульфировании ароматических нитросоединений в аминосульфокислоты (реакция Пири) промежуточными продуктами являются нитрозосоединения. При восстановлении З-нитро-4-диметиламинотолуола реакция заканчивается [c.179]


Смотреть страницы где упоминается термин Использование электролитического цинка: [c.457]    [c.457]    [c.222]   
Смотреть главы в:

Электролиз в гидрометаллургии -> Использование электролитического цинка




ПОИСК





Смотрите так же термины и статьи:

Цинк электролитическое



© 2024 chem21.info Реклама на сайте