Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото Применение покрытий

    Комбинация всевозможных золотых гальванических покрытий и получение различных сплавов золота за счет его легирования другими металлами значительно расширяют возможности применения декоративной отделки, обогащающей и облагораживающей художественные и ювелирные изделия. [c.147]

    В последнее время электролитическое золочение получило довольно широкое применение в электротехнике и радиотехнике для покрытия электрических контактов, печатных схем и в целом ряде других случаев. Недостатком золотых покрытий является их малая твердость. [c.208]


    Характерные случаи применения покрытий золотом приведены в табл. 4.5. [c.116]

    Золото — благороднейший металл, совершенно устойчивый к коррозии и потускнению во всех средах, кроме царской водки. Оно обеспечивало бы наилучшее покрытие для полной защиты от коррозии, если бы, конечно, высокая стоимость не лимитировала сферу его применения. Из-за этого покрытие золотом имеет минимальную толщину, в связи с чем может возникать пористость. При наличии пор высокий катодный потенциал вызывает локализованную коррозию на любом материале основного слоя, подверженном коррозии вследствие Нарушения [c.115]

    Хотя обыкновенно золотые покрытия при промышленном использовании имеют значительное превосходство над традиционными декоративными покрытиями, они только совсем недавно были включены в соответствующий Британский стандарт по покрытиям для двух сфер применения [18]. Высокая отражательная способность золота в инфракрасной области спектра используется при изготовлении рефлекторов, работающих в инфракрасной области. Применяемое для этих целей покрытие толщиной 0,005 мм на основной металл из сплава бериллий — медь дает превосходные результаты. Такого порядка толщина обычно применяется для защиты электрических контактов в электронике, где используется основная часть всех золотых технических покрытий. Для всех основных металлов, включая медь и ее сплавы, никель — серебро, бериллий — медь и фосфористую бронзу, толщина покрытия определяется не только условиями среды, но и механиче- [c.454]

    Широкое применение детекторов по теплопроводности объясняется тем, что они просты в обращении, стабильны, обладают средней чувствительностью, относительно безопасны и дают отклик практически на все соединения. Существуют различные типы этих детекторов некоторые из них имеют теплочувствительную горячую проволоку из таких металлов, как вольфрам, сплав вольфрама с рением, вольфрам с золотым гальваническим покрытием, платина, платиноиридиевый сплав, никель в других — теплочувствительными элементами служат термисторы. [c.80]

    Применение электролиза. Электролиз находит весьма широкое применение. Для защ,иты металлических изделий от коррозии на их поверхность наносится тончайший слой другого металла — хрома, серебра, золота, меди, никеля и т. д. Иногда, чтобы не расходовать дорогие металлы, производят многослойное покрытие. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тончайший слой никеля, а на него — слой хрома. [c.98]

    По своим высоким декоративным свойствам золотые покрытия выделяются среди прочих металлических покрытий. Золото отличается высокой химической стойкостью и не тускнеет с течением времени. Несмотря на высокую стоимость, золотые покрытия имеют достаточно широкое применение. Кроме ювелирного дела и часового производства, золотые покрытия применяют для защиты от коррозии точных приборов или отдельных деталей. [c.208]


    Методы защиты от коррозии весьма разнообразны покрытие металлов краской, лаком, эмалью, другими металлами (цинком, иикелем, кадмием, хромом, серебром, золотом), контакт защищаемого металла с большой поверхностью более активного металла, оксидирование и фосфатирование металлов, применение ингибиторов и ряд других. Они подробно рассматриваются в учебниках. [c.180]

    Полимерные композиции с повышенной проводимостью находят широкое применение в различных отраслях промышленности (антистатические покрытия, емкости и трубы для хранения и транспортировки взрывчатых веществ, экраны для электро- и радиоаппаратуры, низкотемпературные нагревательные элементы и др.). Такие композиции получают путем введения в полимерные диэлектрики, например полиолефины, высокопроводя-щих веществ (порошков металлов, технического углерода, графита). Введение порошков благородных металлов (золота, серебра) позволяет повысить электрическую проводимость до 10 См/м [47, с. 162], т. е. приблизить ее к проводимости самих металлов. [c.73]

    В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы. [c.49]

    Покрытия золотом, несмотря на высокую стоимость металла, имеют широкое применение благодаря химической стойкости, электропроводности и декоративности Золочение применяется в приборостроении и радиоэлектронике, а также в ювелирном и часовом деле. [c.85]

    Для получения оптических фильтров находят применение раст воры золочения следующих составов (г/л) состав 1 — золотохлористоводородная кислота 1, углекислый катрий 30 глюкоза 10. температура 10 °С состав 2 — хлорное золото 3 натрий углекислый 30 формалин (мл/л) 10, температура 8 °С Покрытие толщиной в О 15—0 02 мкм образуется в течение 1—5 мии [c.85]

    Характерные области применения золотых покрытий [c.116]

    Испытания серным ангидридом. Любые ускоренные коррозионные испытания с применением серного ангидрида выявят несплошности осадка покрытия золотом или хромом при коррозии основного металла. Но обычно эти испытания настолько интенсивны, что обесцвечивание, вызванное пористостью, остается незамеченным из-за большого количества продуктов коррозии, обусловленных воздействием сильно действующего реактива на основной металл. По этой причине специальный контроль пористости проводят в среде с меньшим количеством серного ангидрида, чтобы не увеличивать значительно площадь пор и ограничить распространение продуктов коррозии основного металла. [c.148]

    Наряду с электродами из золота и платины для детектирования органических веществ в щелочных средах используются металлоксидные электроды. В частности, на электроде, покрытом пленкой оксида никеля, окисление углеводов наблюдается при сравнительно невысоких потенциалах. Для этих же целей применяется медный электрод, на поверхности которого в щелочной среде образуется слой оксидов и гидроксидов u(II) и u(III). В табл. 18.1 приведены примеры применения металлоксидных электродов для детектирования некоторых органических соединений в потоке жидкости. [c.571]

    Джекобе [1074] определял вольтамперометрически 5,0-10 — —2,50-10 г-ион л Аи анодным окислением золота, электролитически осажденного на электроде из угольной пасты. Электролиз проводят при +0,1 в (отн. н.к.э.) в течение 15 мин, анодное растворение выполняют при потенциале от +0,3 до +1,3 в, анодный пик наблюдается при +0,85 в. Фоном служит 0,1 М НС1. Метод позволяет анализировать смеси Аи + Ag. Предложен [535] инверсионный вольтамперометрический метод определения 10 —10 % Аи с применением электрода из угольной пасты. Метод заключается в электролитическом выделении золота при контролируемом потенциале +0,2 в на поверхности электрода в виде пленки на фоне 0,1—1,0 М НС1 в течение 15—30 мин с последующим растворением золота при линейно изменяющемся потенциале от +0,2 до + 1,3 б. Метод применен для определения 1-10 % Аи в сурьме 0,22—1,01% Аи в покрытиях на вольфраме и молибдене 0,32% Аи в покрытиях на вольфрамовой нити, намотанной на никелевую деталь (0,9—1,3)-10 % Аи в золе растений. Ошибка при определении 5-10 % Аи равна +12%. Позже этот метод применен [91] для определения 0,3 мкг мл Аи в полупроводниковых сплавах Sn — Au после разделения компонентов методом тонкослойной хроматографии. Фон 1 М НС1, потенциал предварительного электролиза +0,2 в, потенциал электрорастворения 0,2—1,3 в, время накопления 10 мин. Найдено 0,29+0,01 мкг мл Аи (и = 6, а = =0,95), коэффициент вариации 2,8%. Монин [1242, 1243] определял 25—500 нг мл Аи методом пленочной полярографии с накоплением. Золото выделяют в течение 5 мин электролизом на электроде [c.174]


    Гальванические покрытия нашли широкое применение в различных отраслях машино- и приборостроения. Покрытия на основе вольфрама и молибдена придают изделиям, изготовленным из стали или меди, повышенную термостойкость покрытия серебром, золотом, палладием и сплавами на их основе обеспечивают электропроводность и коррозионную стойкость покрытии никелем и кобальтом повышают коррозионную стойкость, магнитные характеристики и их стабильность в процессе эксплуатации узлов и агрегатов и т. д. [c.3]

    Высокой ценой золота обусловливается применение покрытий из сплавов с меньшим содержанием золота и добавками более дешевых металлов, таких как серебро, медь, кадмий и т. д. Такие покрытия называются низ-кокаратными. [c.134]

    Ртуть (I и П). Эти титранты генерируют путем анодной поляризации ртутных или покрытых ртутью золотых или серебряных электродов. С применением электрогенерированной ртути (I) и (II) определяют милли- и микрограммовые количества ионов галогенов [540], а также цианиды [541], сульфиды [542, 543], вторичные амины и меркаптаны [544]. Методы определения макроколичеств галогенов путем титрования последних электро- [c.63]

    Из фотоэлементов вентильного типа наиболее широкое применение нашел селеновый фотоэлемент. Конструкция его такова на стальную пластинку наносят слой селена, в свою очередь покрытый полупрозрачной пленкой золота или платины. Во избежание механического повреждения металлической пленки, а также для предотвращения воздействия на фотоэлемент химических реагентов, поверх золотой пленки наносят слой прозрачного лака. Для удобства все части фотоэлемента заключают в эбонитовую оправу или же иногда помещают в эвакуированный стеклянный баллон. Выводы от железной подложки и от покровной золотой пленки присоединяют к клеммам, укрепленным на эбонитовой оправе. [c.83]

    Определению не мешают Ag, d, Zn, o, Ni, u, Rh(III). Большие количества железа подавляют каталитический эффект Oa(VIII), Zr и Мо повышают скорость реакции. Мешают большие количества СГ, S N , С2О4 , N", ЗаОГ и Pd(II). Чувствительность равна 0,01 мкгЫл Аи. Метод применен для определения золота в покрытиях, нанесенных на молибден. [c.167]

    В первой главе автор излагает общие вопросы гальванотехники, рассматривая важнейшие параметры электроосаждения и свойства электроосажденных покрытий. Во второй описаны процессы химической и электрохимической обработки поверхности металлоизделий из наиболее широко применяемых материалов. Большой раздел книги посвящен практике осаждения наиболее часто используемых покрытий (медью, никелем, хромом,цинком, кадмием, оловом, серебром, золотом, латунью, бронзой, железоникелевым сплавом). Даны свойства и описано применение покрытий, весьма подробно типы электроли- [c.8]

    Стеклоэмали, помимо улучшения внешнего вида, эффективно защищают метал-л от коррозии во многих средах. Можно подобрать такой состав эмали, состоящей в основном из щелочных боросиликатов, что она будет устойчива в сильных кислотах, слабых щелочах или в обеих средах. Высокие защитные свойства эмалей обусловлены их практической непроницаемостью для воды и воздуха даже при довольно длительном контакте и стойкостью при обычных и повышенных температурах. Известно о случаях их применения в катодно защищенных емкостях для горячей воды. Наличие пор в покрытиях допустимо при их использовании совместно с катодной защитой, в противном случае покрьггие должно быть сплошным, причем без единого дефекта. Это означает, что эмалированные емкости для пищевых продуктов и химических производств при эксплуатации не должны иметь трещин или других дефектов. Основными недостатками эмалевых покрытий являются чувствительность к механическим воздействиям и растрескивание при термических ударах. (Повреждения иногда поддаются зачеканиванию золотой или танталовой фольгой.) [c.243]

    Толщиномеры электропроводящих покрытий на электропроводящем основании. К электропроводящим покрытиям относятся различные виды гальванических и плакировочных покрытий. Покрытия могут бьпъ как ферромагнитными (никелевые), так и неферромагнитными (медные, цинковые, золотые, серебряные и т. д.). Материал основания может быть магнитным и немагнитным. Многообразие комбинаций покрытий и оснований приводит к необходимости применения специализированных приборов и сложных методик контроля, которые заключаются в предварительных градуировках приборов по контрольным образцам [c.178]

    Золото применяют также для покрытия декоративных изделий и в зубоврачебной практике. В изделиях золото большей частью находится в сплаве с медью, которая придает ему твердость. Соединения золота не нашли широкого применения. Для золочения и окраски стекол и фарфора служит Au la или И [Au U]. [c.419]

    В пленочных и полупроводниковых микросхемах широко используются различные металлы и сплавы, у которых стабильность электрических характеристик сочетается со стойкостью их к химической и электрохимической коррозии. Для проводников и контактов используются металлы с высокой электрической проводимостью золото, серебро, медь и алюминий, причем последний чаще всего для внутрисхемных соединений. В качестве материалов для резистивных пленок преимущественное применение нашли тантал, нихром, хромосилицидные и другие сплавы на основе хрома и тантала. Одни из названных металлов являются коррозионно-стойкими вследствие их высоких окислительно-восстановительных потенциалов (Аи, Ад), другие — из-за самопроизвольного образования пассивирующих оксидных пленок на их поверхности (А1, N1, Сг, Та). Однако при контакте резисторов из этих металлов и алюминия невозможно избежать образования гальванопар Сг—А], Ы —А1 и др., которые чрезвычайно чувствительны к любого рода загрязнениям. Этими загрязнениями могут оказаться остаточная влага, следы кислорода и некоторые химические вещества, выделяющиеся из стенок корпуса и защитного покрытия при технологических операциях герметизации и защиты микросхем. В результате электрохимической коррозии алюминий в месте контакта разрушается, что в итоге приводит к разрыву электрической цепи. [c.281]

    Красивый вид, сопротивление потускнению и коррозионному воз чей стБию различных агрессивных соединений, нггзкое значение и постоянство переходного электросопротивления, коррозионная стойкость при высоких температурах, хорошая паяемость после длительного хранения определяют область применеиия золотых покрытий Золото обладает хорошими антифрикционными свойствами и износостойкостью, по при использовании в обычных узлах трення преимуществ перед серебром не имеет и ввиду ботьшей стоимости, как правггло, не используется Исключением служит применение золотых покрытий для контактов электронных приборов, когда антифрикционные свойства н износостойкость должны сочетаться с коррозионной стойкостью покрытия. [c.132]

    Химическое осаждение можно получить автокаталитически, когда металлическое покрытие осаждается на металлической или активированной металлом поверхности, а его толщина увеличивается более или менее линейно до тех пор, пока поддерживается равновесное по составу состояние раствора. Растворы этого вида обычно называют растворами химического восстановления. К металлам, которые могут осаждаться автокаталитически, относятся медь, никель, железо, кобальт, серебро, золото, платина и палладий. Из этих металлов наиболее широкое распространение (в технике и электронике или для металлизации пластмасс при подготовке к электроосаждению) получили, пожалуй, медь и никель. Серебро и золото имеют более ограниченное применение и используются в некоторых электронных приборах. [c.83]

    Этот метод позволяет восстанавливать изделия из полностью или почти полностью корродированного железа и может быть применен для сильноокисленных археологических предметов из железа и разнородных металлов (например, инкрустированных или плакированных серебром, золотом), когда обработка в водных растворах может привести к утрате покрытий — растворению оксидов под пленкой благородного металла. В качестве восстанавливающего агента используют оксид углерода или водород. [c.159]

    Комплексные соединения широко применяют в химии, биологии и особенно металлургии цветных металлов. Цианид ный способ извлечения золота, аммиачный способ получения меди, никеля, кобальта, добавление фторидов для выщелачивания переходных металлов являются типичными, но далеко не полными примерами применения комплексообразования в гидрометаллургии. Широкое применение нашли они также в пиро- и электрометаллургии. Достаточно напомнить, что промышленным растворителем глинозема является расплавленный криолит Nag [AlFe] при рафинировании меди или никеля в электролит обязательно добавляют комплексо-образователь, улучшающий качество металлического покрытия при производстве порошкового никеля используют легколетучий тетракарбонил никеля [Ni ( 0)4]. [c.264]

    Применение. Металлический кадмпй применяют для антикоррозионных покрытий, более устойчивых, чем цинковые, никелевые и полученные лужением, а также для изготовления различных сплавов (антифрикционных, легкоплавких, припоев, ювелирных, типографских) с такими элементами, как медь, платина, золото, свинец, олово, железо и др. [c.104]

    Далее следуют новые примеры использования соединений висмута в технике. Органовисмутовые полимеры предложено использовать в качестве рентгеноконтрастных материалов [503]. Синтезированы стирилдифенилвисмут и др. висмутовые полимеры, при этом мономер полимеризуется и сополимеризуется по радикальному и анионному механизмам, а при инициировании полимеризации разрывается связь Bi-Ph. Приведены сведения о температуре стеклования и радиозащитных свойствах полимеров. Известно применение солей висмута в качестве рентгеноконтрастных объектов при изготовлении формованных изделий [504]. Оксиды висмута нашли применение в качестве наполнителя огнестойкого звукоизолирующего материала [505]. Тонкие пленки и защитные покрытия — это еще одно из направлений исследований висмутовых материалов. Тонкие оксидные пленки золото—висмут и алюминий— висмут изучены в [506] методами электронной спектроскопии и масс-спектрометрии. Современные пленки для контроля за солнечной радиацией получают магнетронным распылением металлов Сг, Ni и сплавов Ni/ r, а также субоксидов Ti, Bi и Nb, и нанесением их на подложку. Толщина, структура и морфология пленок поддаются регулированию, что позволило получить гшенки с улучшенными характеристиками для солнечной энергетики [507]. Химически осажденные двухслойные покрытия на стекле для контроля и офаничения пропускания солнечной радиации предложены в [c.321]

    Основными путями борьбы с коррозией при трении является применение различных смазок, изготовление деталей из металлов разной твердости. При этом легкозаменяемые узлы следует делать из более мягких металлов, чем труднозаменяемые. Хорошие результаты дают азотирование, бориро-вание сталей или замена чистых металлов их сплавами (например, замена золота сплавом золото — серебро — медь при покрытии контактных пар и др.). [c.12]

    Высокие механические свойства, хорошая коррозионная стойкость и удовлетворительная электропроводность палладия обеспечили ему широкое применение в электротехнической промышленности (радиотехнике и электронике) для покрытия контактов различной аппаратуры. Однако в слабо-точных цепях и в герметичных изделиях (объемах) его применение в качестве покрытия ограничивается тем, что наличие органических продуктов в замкнутом объеме приводит к заметному повышению переходного сопротивления контактов. Кроме того, водород, адсорбируемый покрытием палладия, ухудшает прочность сцепления с основным металлом. В негерметич-ной аппаратуре палладиевые покрытия могут заменять золотые. [c.152]

    В табл. 38 приведено большое число электролитов золочения, однако многие из них не нашли широкого применения. Это связано с тем, что получение качественных покрытий при длительной работе электролита зависит от факторов, не всегда поддающихся регулированию или контролю. Так, при повышенных тev пepaтypax допустимы большие плотности но при этом необходима усиленная вентиляция, потому что имеют место значительные потери электролита в вентиляционные каналы. Увеличение концентрации свободного цианида способствует лучшей растворимости золотых анодов и обеспечивает получение мелкозернистых покрытий, но при этом [c.198]

    Покрытия сплавом золото — серебро — медь нашли широкое применение в радиоэлектронике. Равновесный потенциал сплавообразования (рис. 119) имеет большее положительное значение, чем потенциалы восстановления золота и меди, и большее отрицательное, чем серебро из электролита, не содержащего свободного цианида. Первый предельный ток обусловлен восстановлением серебра и золота, а второй — восстановлением в сплав меди (при к > 0,2 А/дм ). При повышении концентрации свободного цианида [c.201]

    Покрытия сплавом золото — медь имеют розовато-золотистый оттенок и обладают повышенными твердостью и износостойкостью. Они нашли применение как износостойкие и защитнодекоративные покрытия. Для получения таких покрытий используют электролиты (в г/л)  [c.202]


Смотреть страницы где упоминается термин Золото Применение покрытий: [c.425]    [c.464]    [c.262]    [c.328]    [c.40]    [c.187]    [c.106]    [c.183]   
Справочник по гальванопокрытиям в машиностроении (1979) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Золото применение

Покрытия и золотые

Свойства и применение золотых покрытий



© 2025 chem21.info Реклама на сайте