Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы ионное осаждение

    В сплавах цветных металлов часто содержатся кремний, фосфор и мышьяк, которые могут быть определены после растворения сплава в концентрированной азотной кислоте в полученном растворе определяют фосфат-ион осаждением молибдатом аммония. Кремний в виде кремневой кислоты остается в нерастворимом остатке вместе с метаоловянной кислотой, которую отделяют растворением в концентрированной соляной кислоте, как описано выше кремневую кислоту обнаруживают по 44. Мышьяк определяют обычным путем (см. 17). Если в сплаве присутствовал фосфор, то при систематическом ходе анализа он должен быть удален, как это описано в 18. [c.131]


    Возможность совместного осаждения металлов на катоде так же, как и состав получаемых сплавов, зависит от относительных скоростей восстановления их ионов в данных условиях. [c.432]

    В большинстве случаев при совместном осаждении металлов скорости электрохимических реакций существенно отличаются от скоростей раздельного восстановления ионов. В реальных условиях электроосаждения сплавов необходимо учитывать, кроме указанных выше факторов, влияние изменения природы, состояния и величины поверхности электрода, на которой протекает реакция, строения двойного электрического слоя, состояния ионов в растворе, влияние энергии взаимодействия компонентов при образовании сплава и др. В зависимости от характера и степени влияния этих факторов, скорости восстановления ионов при совместном выделении металлов на катоде могут отклоняться в ту и другую стороны от скоростей раздельного их осаждения. [c.433]

    Сплав серебро — медь осаждают из цианистых электролитов, содер ащих в виде ионов u( N)2 и Ag( N)2 8 г/л меди и 2 г/л серебра (в пересчете на металлы). Определите массовый состав спла-на (%), если осаждение обоих металлов ведется при предельных токах [c.433]

    Анализ стандартных образцов нужно проводить в условиях, аналогичных условиям последующих определений (концентрация веществ, присутствие мешающих определению ионов, температура осаждения и др.). Конечно, анализ сложных соединений, таких, как сплавы или минералы, нецелесообразно полностью воспроизводить на искусственных смесях. Но основные операции разделения, выделения и определения компонентов нужно отработать на стандартных образцах. [c.100]

    Сплав серебро—медь осаждают на цианистых электролитах, содержащихся в виде ионов Си ( N)J и Ag ( N)i 8 г/л меди и 2 г/л серебра (в пересчете на металлы). Определите массовый состав сплава (%), если осаждение обоих металлов ведется при предельных токах и константы диффузии ионов одинаковы. [c.469]

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]


    В первом случае требуемая относительная скорость растворения металлов регулируется путем установления соответствующих плотностей тока (при индивидуальном подводе тока к каждому аноду) или рабочих поверхностей анодов (при одной общей подводке тока). Во втором случае, когда ионизации подвергается лишь один"металл, убыль ионов второго металла (при осаждении бинарных сплавов) компенсируется добавлением к раствору соли этого металла или другого какого-либо его соединения. [c.436]

    При выделении оловянной кислоты из сплавов осадок захватывает заметные количества ионов других металлов, находившихся в сплаве (медь, желе о и др.) захватывается также фосфорная кислота. При выделении нерастворимой кремневой кислоты из раствора силикатов захватываются и не удаляются при последующем промывании примеси многих металлов, дающих в этих условиях растворимые соли. При осаждении щавелевокислого кальция захватывается заметное, а иногда и большое [c.57]

    В случае присутствия в сплаве олова и сурьмы осадок -оловянной и сурьмяной кислот отфильтровывают. Затем приливают к раствору избыток серной кислоты и осаждают сернокислый свинец. Вместе с сернокислым свинцом в осадке могут оказаться барий, серебро, висмут, кальций и стронций, если ионы этих элементов были в растворе при осаждении, а также кремниевая кислота. [c.176]

    Осаждение сплава медь — цинк затруднено тем, что стандартные потенциалы меди и цинка отличаются более, чем на 1 В. В настоящее время для получения электрохимического сплава медь—цинк предложены как комплексные, так и простые электролиты. Г сли при электроосаждении сплава из комплексных электролитов стремятся к сближению равновесных и катодных потенциалов путем изменения активности ионов, то при осаждении из растворов простых солей сближение достигается путем электроосаждения меди на предельном токе. В последнем случае, однако, удается получать осадки латуни толщиной до 1 мкм и только в присутствии ПАВ. [c.59]

    Эффективность химических моющих растворов может быть значительно усилена, а опасность их воздействия на металл уменьшена или предотвращена за счет электрохимического процесса. С этой целью используется поляризирующий ток плотностью примерно 500 А/м при напряжении 3—12 В. Обработка, например, черных металлов производится анодным способом, а сплавов с медью — катодным. Во многих случаях производится быстрое изменение полярности, чтобы снять осажденный шлам с находящегося в растворе изделия. В результате разряда ионов водорода или кислорода на поверхности металла под слоем жира образуются пузырьки газа, которые обеспечивают его механическое разрушение и удаление. Кроме того, щелочи, образованные при катодной обработке, способствуют разрыву масляной пленки и собиранию ее в капельки. Электрохимическое обезжиривание не пригодно для обработки олова, свинца, цинка, алюминия и легких сплавов. [c.57]

    Растворы. Неэлектропроводные или негомогенные пробы переводят в раствор при помощи подходящих реакций растворения. Используя физические или химические операции разделения (экстракция, электролиз, ионный обмен, осаждение и т. д.), можно отделить мешающие элементы, спектры которых имеют очень много линий (особенно железо), или сконцентрировать следовые количества элементов. Таким же образом следует удалять большие количества солей щелочных металлов (например, из сплавов), так как они могут уменьшить чувствительность определения следовых количеств эле- [c.193]

    Однако это не единственная причина, которая ограничивает время анодной поляризации в этих исследованиях. Анодное растворение сплавов, имеющих высокое содержание неблагородного компонента, происходит при столь отрицательных потенциалах, что в период анодной поляризации оказывается возможным восстановление на поверхности исследуемого электрода ионов благородного металла. Такое восстановление происходит не сразу после начала анодной поляризации сплава, а через некоторое время, когда в приэлектродном слое будет достигнута необходимая концентрация ионов благородного компонента для преодоления торможений образования первых зародышей новой фазы. Поэтому сокращение времени анодной поляризации приводит к предупреждению обратного осаждения на исследуемом электроде благородного компонента. В этом случае необходимо перейти к поляризации с высокой частотой изменения полярности, или, собственно говоря, к поляризации переменным током. [c.227]

    По рис. 71 видно, что электрогравиметрическое определение можно сочетать с разделением. Для практически полного осаждения ионов металла необходимо напряжение, соответствующее рМе 5 (абсцисса точки пересечения с прерванной горизонтальной линией на рис. 71). Если при этом другие находящиеся в растворе ионы еще не разряжаются, выделяется только один металл. Так, например, анализ латуни (сплава меди и цинка) можно осуществлять следующим образом. После растворения навески проводят электролиз при напряжении на электролитической ячейке около 1,55 В. При этом на катоде выделяется медь, масса которой равна приросту массы этого электрода. Электролиз продолжают при напряжении 2,6 В, причем выделяется цинк, массу которого также находят по приросту массы катода. [c.279]


    Однако в тех случаях, когда необходимо отделение одного иона от других мешающих ионов, это требование часто существенно изменяется. Критерием выбора реактива и условий проведения реакции в этом случае не может быть просто наименьшая растворимость осадка. Необходимо выбирать реактив так, чтобы иметь возможность осадить данный ион и не осаждать других ионов. Например, ион свинца можно осадить в виде углекислого свинца, в виде хромовокислого или в виде сернокислого. Соответствующие значения произведений растворимости равны ПРрьсо,= 1 Ю , ПРрьсго.= ЫО и ПРрь5о.= Ы0 . Для осаждения иона свинца в отсутствие мешающих ионов, конечно, лучше всего выбрать в качестве осадителя хромат или карбонат. Однако в сплавах вместе со свинцом часто присутствуют медь и висмут, которые осаждаются карбонатами хромовокислый висмут также очень трудно растворим, довольно слабо растворима и хромовокислая медь. Таким образом, для отделения свинца в указанных условиях наиболее специфическим реактивом является сульфат-ион, хотя РЬ50 более растворим, чем РЬСО, и РЬСгО . Следовательно, при отделении одного иона от других весьма существенным моментом является специфичность реакции при данном конкретном составе анализируемого вещества. Специфичность реакции редко может быть достигнута только выбором реактива. Большое значение имеют условия проведения реакции, прежде всего создание определенной кислотности раствора, а также введение подходящих комплексообразователей. [c.76]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления. [c.140]

    Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых — из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя. [c.129]

    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    Как было установлено, мищени из платины или сплава золота с палладием удовлетворяют требованиям обычной практики приготовления образцов для РЭМ. Можно использовать мищени из большинс-тва других благородных металлов и их сплавов, а также из таких элементов, как никель, хром и медь. Коэффициенты распыления разных элементов различны, и это следует иметь в виду при расчете толщины покрытия. При распылении мишени из углерода возникают трудности, так как, хотя и возможно очень медленно распылять мишень ионами аргона, скорость распыления падает довольно быстро. Такое уменьшение обусловлено либо присутствием форм углерода, имеющих энергию связи выше энергии ионов аргона, либо тем, что худшая проводимость углерода приводит к зарядке и понижению скорости распыления. Утверждение, что углерод можно распылять при низких напряжениях в диодном распылителе, по-видимому, является ошибочным. Осадки углерода , которые получаются, вероятнее всего, представляют собой углеводородные загрязнения, разлагаемые в плазме, а не материал, распыляемый из мишени. По-видимому, вероятность того, что будет разработан простой метод получения покрытия из алюминия распылением, мала. Окисный слой, который быстро образуется на поверхности алюминия, препятствует распылению при низких ускоряющих напряжениях, а довольно плохой вакуум затрудняет осаждение металла. Для получения детальной инфор- [c.203]

    С использованием электрохимических и электронномикроскопических методов анализа авторами работы [99] изучено влияние концентрации стабилизирующих добавок различной природы (ТШОз, РЬ(СНзСОО)г, тиомочевина) на скорость образования, состав и структуру Ni—В-осадков. Состав и температура раствора были такими же, как и в описанных выше исследованиях [12, 16, 35, 37]. Были подтверждены данные этих работ, свидетельствующие о специфическом влиянии ионов Т1 на процесс восстановления борсодержащего сплава скорость осаждения последнего даже при температуре 60° С имела довольно большое значение — 8 мкм/ч, а содержание бора в осадках оказалось резко сниженным и составляло — в зависимости от температуры раствора — 3,5—4,7%. Исследования показали, что оптимальными в отношении основных параметров процесса, проводимого при температуре 95° С, концентрациями стабилизаторов являются следующие 100—175 мг/л (TINO3), 15—100 мг/л (РЬ(СНзС00)2-ЗН20) и 0,2—1,0 ((NH2)2 S). Особенно необходимо отметить сделанный в этой работе вывод о том, что в присутствии в растворе ионов Т1+, в отличие от ионов Pb , по-видимому, значительно повышается перенапряжение выделения водорода. Особая роль ионов Т1+ иллюстрируется данными рис. 6 и рис. 7. [c.171]

    Совместное осаждение меди и цинка из кислых растворов простых солей практически невозможно из-за большой разности их потенциалов (более чем на 1 В). Применяют комплексные, главным образом цианистые, соли этих металлов, в которых потенциал меди значительно смещается в сторону отрицательных значений, приближаясь к потенциалу выделения цинка. Как видно из рис. ХП-23, суммарная поляризационная кривая выделения сплава до плотности тока 1,2 А/дм располагается в менее отрицательной области по сравнению с кривыми раздельного восстановления ионов меди и цинка, что указывает на облегчение процесса, обусловленное сплавообразованием. [c.439]

    Полученные на катоде осадки металлов в большинстве случаев вполне удовлетворяют требованиям, предъявляемым и к осаждаемой, и к весовой формам, поэтому электролиз дает возможность очень точно определять содержание некоторых металлов в растворах их солей, а применение соответствующей аппаратуры и проверенных методик позволяет выполнять определения сравнительно быстро. Электрогравиметрический анализ весьма широко применяется на практике, особенно при исследовании цветных металлов и сплавов. Имеется, однако, ряд металлов, которые не дают при электролизе достаточно плотных осадков на электроде . Кроме того, когда в растворе присутствует не один, а нескэлько катионов, может происходить одновременное разряжение и осаждение их на катоде или разряжение вместо определяемого каких-либо посторонних ионов (например, Н -ионов). [c.421]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]

    Метод определения 2п в сплавах основан на осаждении 2п в составе нерастворимого комплексного соединения K2Znз[Fe( N)6]2. Написать реакцию сульфата цинка с гексацианоферратом калия в молекулярном и ионном виде. [c.173]

    Широкое применение, особенно в машиностроении, для защиты от атмосферной коррозии находят гальванические покрытия, которые получаются катодным осаждением заш,ищающего металла или сплава из водных растворов, содержащих катионы металла — покрытия. Металлические покрытия получают также химическими методами путем восстановления ионов металла е помощью веществ-восстановителей, находящихся в растворе. [c.49]

    Наконец, при определении титана в черных металлах и сплавах часто для отделения железа применяют купферон (см. 22). Способ основан на том, что купферонат титана значительно меньше растворим, чем купферонат двухвалентного железа. К раствору, содержащему ионы тптапа и двухвалентного железа, приливают раствор купферона до тех пор, лока вместо светложелтого осадка купфероната титана начнет выделяться коричневый осадок купфероната железа. Так отделяют титан от осно вной массы железа. Небольшое количество железа, осажденное совместно с титаном, не мешает определению. Затем купферонат прокаливают и полученную двуокись титана сплавляют с кислым сернокислым калием  [c.259]

    Что касается влияния структуры двойного слоя и состояния ионов в растворе на кинетику, совместного разряда йодов, то этот фактор играет первенствующую роль как в процессе электроосйждения сплавов, так и в процессе перехода из раствора в осадок примесей при осаждении чистых металлов. [c.51]

    Для построения парциальных поляризационных кривых осаждения 5п и N1 в сплав, зная состав сплава (см. табл. 8.1) и выход по току суммарного процесса при каждой плотности тока ( к), определяют доли тока ( парц), приходящиеся на разряд ионов олова и никеля при совместном их выделении. Так как выход по току сплава близок к 100 %, то можно не учитывать доли тока на выделение водорода. В общем же случае расчет парциональной плотности тока ведут по формуле  [c.58]

    Потенциал осаждения металла из комплекса отличается от потенциала выделения металла из простых солей. Координация аддендов ионами металлов-камплексообразователей приводит к изменению величины потенциала выделения металла. Причем потенциал выделения из однотипных комплексов для разных металлов сдвигается в различной степени в за висимости от прочности образующихся комплексов. Поэтому становится возможным электролитическое разделение этих металлов электролизом растворов их координационных соединений, С другой стороны потенциалы осаждения металлов в результате образования комплексов могут быть сближены. Электролиз растворов таких ком1плексов приводит к выделению сплавов. Например, в присутствии избытка цианид-иона удается электролитически отделить железо от цинка, тогда как при электролизе циаяидсодер-жащих растворов меди и цинка выделяется латунь. [c.15]

    Анализ свинцово-оловянных сплавов основан на растворении сплава в НМОз и последующем спектрофотометрическом титровании избытка оксалата, прибавляемого для осаждения РЬ+ -ионов, солями церия (IV) в области 365 нм (Се и С2О4 в этой области не поглощают). [c.269]

    Величина АФа компонента А будет в таком случае равм ха, а для В соответственно АФь равна хЬ. Сближение потенциалов будет пропорционально разности (ха — хЬ). Как нетрудно заметить, эта разница зависит от концентрации компонента А в сплаве. В точке х, т. е. в максимуме интегральной кривой, она достигает значения, равного нулю,,. после чего меняет свой знак, и, следовательно, при большей концентрации компонента А в сплаве вместо сближения потенциалов можно наблюдать противоположный эффект тогда для совместного осаждения компонентов А я В понадобится принять дополнительные меры. Можно, следовательно, заключить, что в процессе совместного осаждения двух металлов потенциал смещается в положительную сторону и для одного и для другого металла на величину,, определяемую соотношением обоих компонентов в сплаве вследствие этого и сближение потенциалов осаждения за счет энергии, (выделяющейся при образовании сплава (энергии смещения ), также тесьма существенно зависит от концентрации сплава. В ряде случаев, например ири осаждении латуни, особеино богатой цинком, сближение потенциалов выделения происходит не за счет энергии смещения, но вследствие других причин и, в частности, вследствие образования более устойчивых комплексов в растворе. Так, повышение концентрации цианистого калия в растворе не только сближает равновесные потенциалы ионов меди II цинка (табл. 23), но и обусловливает изменение кинетики совместного разряда этих ионов при заданной плотности тока. [c.380]

    Взяв вращающиеся электроды, у которых диски сделаны из различных серебряных сплавов, получаем аналогичные зависимости в тех же координатах /к — /д , но здесь /д" — парциальный анодный ток по серебру на диске, который рассчитывается теоретически в предположении, что растворение ннтерметаллической фазы (сплава) идет равномерно. Если разрушение диска происходит с ионизацией обоих компонентов в соответствии с химическим составом сплава, то полученная зависимость в пределах ошибки опыта (5—8%) совпадает с кривой 1 (рис. 133). При селективном разрушении сплава, т.-е. когда серебряная составляющая частично ионизируется или полностью не растворяется, полученные кривые 2, 3, 4 располагаются ниже кривой 1. Отношение ординат при каждой плотности тока /д дает долю ионизировавшегося благородного компонента. Для определения парциальной силы анодного тока следует воспользоваться уравнением (8.59). После этого нетрудно рассчитать процент ионизировавшегося благородного компонента. Для того чтобы убедиться, что константа k реакции осаждения ионов серебра на диске равна нулю, зависимости /к — получаются при разных скоростях вращения электрода. Они должна быть одинаковыми. [c.237]

    Анализ Н. на ниграт-ион основан на его восстановлении до NHj сплавом Деварда и поглощении NH3 титрованным р-ром к-ты либо на осаждении в виде нитроннитрата с помощью нитрона. [c.257]

    Конструкции электродов для электролиза прн контролируемом потенциале показаны на рис. 7-2-1. Катодом обычно служит платиновая сетка нли цилиндр вз платиновой фольги дигметром 2-3 см. Преимуществом платиновых электродов является их сравнительно низкая реакционная способность и возможность их использования для осаждения ряда ионов металлов. Однако щж выделении некоторых нонов металлов, в особенности олова н цинка, требуется защитное покрытие во избежание образования сплава. [c.387]

    Fe(III), a также предотвращает возможное осаждение перйодата или иодата марганца [5111. При малых концентрациях марганца определение рекомендуют проводить в 2 iV H2SO4, а при больших — в 3,5 N H2SO4 [574, 1377]. Определению марганца мешают восстановители и хлорпд-ионы. 40-кратные количества Сг(1П) не влияют на определение малых количеств марганца 0,1 %). Допустимо присутствие 50-кратных количеств u(ll), Ni(II) и 20—100-кратных количеств Со(П) [663, 664]. Однако можно достигнуть полной компенсации окраски любых количеств этих примесей, применяя в качестве раствора сравнения испытуемый раствор, в котором Mn(VII) восстановлен до Мп(П) нитритом натрия [401, 664]. Такой способ дает хорошие результаты даже при количествах Си, Ni, Со и Сг в 200—300 раз превышающих содержание марганца [664]. Этот прием используют при определении содержания марганца в соединениях тория [437], сталях [1236], манганиновых сплавах [20]. [c.56]


Смотреть страницы где упоминается термин Сплавы ионное осаждение: [c.127]    [c.55]    [c.432]    [c.142]    [c.79]    [c.401]    [c.291]    [c.141]    [c.331]    [c.77]    [c.310]    [c.57]   
Технология тонких пленок Часть 1 (1977) -- [ c.391 , c.452 , c.459 ]




ПОИСК





Смотрите так же термины и статьи:

Осаждение Bl, Sb, As, Mn, Осаждение сплавов



© 2025 chem21.info Реклама на сайте