Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лабораторные установки и реакторы для исследования химических процессов

    Проточные интегральные реакторы, обычно заполненные катализатором трубки, аналогичны аппаратам, применяемым в промышленности, и по условиям своей работы близки к ним. Это имеет существенное значение в прикладных исследованиях, когда кроме чисто химических и расчетных данных необходимо выявить технологические особенности процесса, получить образцы целевого продукта, сведения о длительности работы катализатора и качества целевого продукта и т. п. Поэтому стадия модельной установки с проточным реактором является практически необходимой в разработке промышленных гетерогенно-каталитических процессов. Целесообразно использовать эти реакторы для получения данных по кинетике, необходимых для расчета и проектирования промышленных реакторов. При применении современной машинной вычислительной техники постановка опытов на проточных интегральных реакторах может дать большой объем информации, позволяющий составить математическое описание процесса с большой степенью надежности и тен самым решить задачу перехода от лабораторного или пилотного реактора к промышленному любой схемы и конструкции, в том числе и к оптимальному. [c.402]


    Несмотря на то что кинетика простых химических реакций не зависит от масштаба эксперимента, это не дает оснований непосредственно переносить результаты лабораторных исследований на промышленные установки. Любой реальный химический процесс, особенно протекающий в больших масштабах, всегда сопровождается переносом реагирующих веществ и продуктов реакции с одновременным выделением или поглощением тепла. Эти процессы сложным образом зависят от величины и геометрии реактора. В итоге протекание процесса сильно зависит от масштаба реактора. Так, при увеличении его диаметра возможно снижение эффективности, уменьшение выхода основного продукта и образование нежелательных побочных продуктов, которых не было при лабораторных исследованиях. Практически это означает, что для переноса результатов лабораторных исследований в масштаб завода надо в несколько этапов воспроизводить исследуемый процесс, переходя от меньших масштабов к большим, проходя через этапы пилотных и полупромышленных установок. При этом должны быть выдержаны постоянными критерии подобия — безразмерные величины, составленные из комбинаций различных физических величин. [c.322]

    Результаты исследований в масштабе лабораторной установки должны давать исчерпывающие сведения о теплотах реакций, энергиях активации, скоростях реакций, физических и химических равновесиях системы, а также о процессах тепло- и массообмена. Эти данные необходимы для проектирования удовлетворительно работающей полузаводской аппаратуры. Все эти данные должны быть получены для проектирования реактора, секции разделения и очистки и оборудования для рециркуляции потоков, без чего невозможно достигнуть приемлемых показателей процесса. Для получения всех данных, необходимых для проектирования, схема проведения работ в лабораторном масштабе должна разрабатываться с участием квалифицированного проектировщика. [c.26]

    Проведение реакций при высоких давлениях является эффективным средством для увеличения скорости химической реакции, позволяет сдвинуть равновесие в благоприятную сторону, и увеличить выход конечного продукта. Лабораторная установка для проведения реакций под давлением (рис. 21) представляет собой ко.мплекс аппаратуры, главной частью которой является реактор /, в котором осуществляется химическая реакция. В лабораторных исследованиях применяют главным образом реакторы периодического действия—. автоклавы, представляющие собой пустотелые цилиндры объемом от 150 до 1000 мл, конструкция которых заранее рассчитана на максимальное рабочее давление процесса. Подогрев реакционной смеси достигается помещением автоклава в электронагревательную печь 2 с автоматическим регулированием температуры. Для перемешивания содержимо- [c.74]


    Расчет промышленных реакторов непосредственно по данным лабораторных исследований возможен только в простых случаях, например для изотермических или адиабатических реакций в гомогенной среде. Выше уже указывалось, что нужно проводить исследования в промежуточном масштабе. Необходимые для проектирования данные находятся при исследованиях ь полупромышленной или опытной промышленной установках в виде эмпирических зависимостей выхода химического превращения от параметров работы реактора. Нашей целью в основном является достижение в большем масштабе оптимальных условий, полученных в меньшем масштабе. Как и при масштабировании единичных типовых процессов, в этом случае можно использовать теорию подобия. [c.461]

    В некоторых случаях высказывают мнение о том, что применение метода математического моделирования полностью исключает испытания новых процессов в укрупненных установках. На наш взгляд, это неправильное утверждение. Опытная установка может понадобиться для производства небольших партий продукта, проверки стабильности катализатора и прочности материалов аппаратуры, уточнения отдельных коэффициентов модели. Однако все принципиальные решения об оптимальных режиме и типе химического реактора, основных размерах зерен и количестве катализатора можно найти математическим моделированием на основе правильно поставленных и проведенных лабораторных исследований. Если для решения какой-либо специальной задачи необходима укрупненная установка, то и ее нужно создавать на базе метода математического моделирования в соответствии с перечисленными выше этапами, которые тесно связаны между собой. В зависимости от результатов анализа иногда приходится возвращаться к предыдущим этапам и снова уточнять выбранные условия и параметры. Последовательное приближение обеспечивает разработку аппарата, наилучшим образом удовлетворяющего всем требованиям. [c.521]

    Однако при лабораторном исследовании процессов химической переработки нефти наряду с установками непрерывного действия используют и периодически действующие, а в качестве реакторов — автоклавы, кубики и т. п. Применяя подобные аннараты, можно получать данные об общих закономерностях процессов, обходиться небольшими загрузками сырья, получать более точный материальный баланс процессов, но нельзя точно воспроизвести некоторые специфические условия и параметры непрерывных промышленных процессов. [c.78]

    Ранее было показано, что традиционное проектирование химических производств даже с использованием ЭВМ — весьма сложный и трудоемкий процесс, выполняемый различными специализированными коллективами проектировщиков. При этом один коллектив, например, занимается подбором катализаторов и определением параметров реакторов, другой — разрабатывает методы разделения продуктов хихмического превращения, третий — подбором материалов, оборудования и т. д. с широким привлечением аналогий и типовых решений. Выполненные исследования по отдельным узлам объединяются в технологические схемы и апробируются на лабораторных и пилотных установках. Результаты экспериментальных исследований в порядке обратной связи поступают к проектировщикам и являются основой для внесения изменений и усовершенствований на любой стадии обработки проекта. [c.29]

    Анализируя развитие химической технологии на протяжении последних десятилетий, можно выделить два осповных направления исследований. Первое было связано с поисками законов масштабного перехода, которые позволили бы от небольших лабораторных аппаратов перейти сразу к крупномасштабным промышленным реакторам, мппуя длительные промежуточные стадии отладки процесса на пилотных и опытно-промышленных установках. Второе направление развития химической технологии, связанное с бурным прогрессом вычислительной техники, основывается на математическом моделировании технологических процессов. Располагая математической моделью, с помош,ью со-ьременпых ЭВМ можно рассчитать характеристики процесса, отвечающие реальным размерам реактора, и провести оптимизацию конечного результата по технологическим параметрам. [c.52]

    Исследования процессов гидроочистки нефтепродуктов проводятся на проточных лабораторных и пилотных установках в изотермических интегральных реакторах при наличии градиента концентраций реагирующих веществ как вследствие протекания химических превращений, так и в результате продольного и поперечного перемешивания фаз. Поэтому кинетику химических превращений приходится изучать на основании данных о скорости процесса в целом. Однако кинетические зависимости для процесса в противоположность истинным кинетическим зависимостям меняются с изменением размеров аппарата, линейной ско-ростй реакционной смеси и других факторов, определяющих соотношение между скоростями химических превращений и интенсивностью процессов переноса вещества и тепла, что затрудняет решение задачи масштабного перехода [c.44]


    Проведенные на лервом этапе разработки процесса исследования физико-химических основ и кинетических закономерностей гидрокрекинга различных видов сырья позволили обосновать возможность создания процесса гидрокрекинга под невысоким давлением для превращения высокомолекулярной части сернистых и высокосернистых нефтей. Лабораторные исследования на модельных установках с реакторами объемом 0,25—60 л подтвердили возможность осуществления такого процесса. Эти исследования показали, что при переработке сернистой нефти типа ромашкинской или высокосернистой типа арланской, применяя в качестве головного процесса гидрокрекинг, можно получить следующие продукты, % вес.  [c.101]


Смотреть страницы где упоминается термин Лабораторные установки и реакторы для исследования химических процессов: [c.2]    [c.143]    [c.156]    [c.267]    [c.18]   
Смотреть главы в:

Лабораторный практикум по химии и технологии основного органического и нефтехимического синтеза Изд.2 -> Лабораторные установки и реакторы для исследования химических процессов




ПОИСК





Смотрите так же термины и статьи:

Лабораторные установки

Процесс в химическом реакторе

Процесс исследование

Процесс реакторов

Реактор химический

Установка лабораторные для исследования

Установка химическая



© 2025 chem21.info Реклама на сайте