Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение и переработка углеводородных смесей

    Способ был уже подробно рассмотрен, когда речь шла о переработке природного газа. В данном случае он применяется или для концентрации жидкой составной части (Сз и С4 — углеводороды) крекинг-газа, или для отделения водорода и метана. Этим очень сильно облегчается дальнейшее разделение сконцентрированной таким образом углеводородной смеси. Принцип разделения основан на том, что углеводородная смесь вступает в контакт с промывочным маслом (абсорбентом) при таких условиях температуры и давления, при которых метан и водород в нем не растворяются и удаляются из установки. Свободный от метана и водорода газ, абсорбированный маслом, выделяют из последнего нагревом и затем разделяют. Табл. 39 показывает результат разделения пирогаза путем абсорбции при комнатной температуре и давлении 20 ат. [c.72]


    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Сырьем для получения аммиака служит смесь азота и водорода. Водород для этой смеси получают разными способами, из которых наиболее распространенными являются конверсия природного газа (метана) и других углеводородных газов комплексная переработка природного газа в ацетилен и синтез-газ фракционное разделение горючих газов, в частности, коксового, методом глубокого охлаждения газификация твердого и жидкого топлива с последующей конверсией окиси углерода электрохимический способ получения водорода. [c.113]

    Разделение газов крекинга нефти и пиролиза нефтяного сырья на отдельные компоненты осуществляют либо абсорбционным методом, либо методом фракционированной конденсации. Абсорбционный метод разделения заключается в растворении в поглотительном масле отдельных компонентов газовой смеси. Выделенный из масла сырой продукт, представляющий смесь углеводородов, подвергается дальнейшей ректификации. Абсорбционный метод находит широкое применение для переработки главным образом естественных нефтяных газов на тяжелые фракции — пропиленовую, бутановую и пентановую. Газы же крекинга и термической переработки нефти, которые содержат значительное количество этилена и пропилена, требуют более четкого разделения, осуществляемого методом фракционированной конденсации, при котором производится непрерывный отбор образующегося конденсата. Этот метод приобрел практическое значение в установках разделения коксового и водяного газов, в гелиевой технике, а также при разделении углеводородных газов, получаемых пиролизом и крекингом нефти, с целью выделения чистых фракций метана, этана, пропана, этилена, пропилена, бутиленов, являющихся ценнейшим сырьем для новых отраслей химической промышленности. [c.283]


    Наличие стабильной сырь рй базы и растущая потребность в компонентах природного газа в нефтехимической и других отраслях являются основой дальнейшего развития газоперера-ботки. Природный газ представляет собой сложную смесь легких углеводородов и неуглеводородных компонентов, таких как сероводород, меркаптаны, диоксид углерода, азот, гелий и т.п. Соотношение этих компонентов в сырье может изменяться в широких пределах и будет оказывать влияние на выбор поточной схемы газоперерабатывающих заводов и перечень получаемых товарных продуктов. Физическая переработка природного газа в большинстве случаев сводится к сепарации сырьевого газа с целью отделения влаги, механических примесей и углеводородного конденсата, извлечению из отбензиненного газа нежелательных компонентов (сероводород, тиолы, диоксид углерода и т.п.), абсорбционной и адсорбционной осушке и разделению углеводородной части на узкие фракции или индивидуальные компоненты. [c.3]

    Квалиф1щировапиое использование высококипящих фракций нефти требует знания количественных характеристик их углеводородного состава и природы гетероатомных функций, отрицательно влияющих на различные стадии каталитических процессов переработки. Для таких высокомолекулярных соединений нефти уже не приходится говорить о молекулярном уровне, индивидуальном составе. Для характеристики этих не поддающихся разделению смесей используется еще одна форма отражения химической природы вещества — структурно-групповой состав. Это понятие отражает рассчитываемые каким-либо способом количественные распределения атомов между различными структурными фрагментами насыщенных и ароматических циклов, гетерофункций и т. д. в условной средней молекуле , обладающей таким же элементным и функциональным составом, ка-н ущейся молекулярной массой и спектральными характеристиками, как и анализируемая смесь. [c.50]

    Поскольку исходным сырьем на установках инициированной полимеризации являются углеводородные фракции легкого масла и газовой смолы, наряду с фракциями низкомолекулярных ароматических углеводородов предложена комплексная схема переработки легкого масла завода Нефтегаз и газовой смолы Сумгаитского завода синтетического каучука . Вначале легкое масло пиролиза дистиллятного сырья и газовая смола должны раздельно подвергаться ректификации, как это практикуется на заводе Нефтегаз , поскольку при первичной ректификации легкого масла в остатке образуется сольвент (фракция, кипящая выше 190 °С), являющийся компонентом товарного зеленого масла. В остатке перегонки газовой смолы получается темная густая жидкость, используемая в настоящее время для промывки гидравликов. Фракции ПО—190 °С, выделенные при реетификации легкого масла и газовой смолы, можно подвергать полимеризации совместно. В результате полимеризации получается смесь синтетических смол с незаполимеризовавшейся углеводородной частью. Разделение происходит в отгонной колонне путем подачи в нее водяного пара. [c.150]

    Углеводородная газовая смесь в блоке компримиро-вания сжимается до рабочего давления, определяемого условиями транспортирования или условиями ее последующей переработки. При компримировании газовой смеси высококипящие тяжелые компоненты и вода конденсируются из исходного газа и выводятся из смеси. Сжатая газовая смесь направляется в блок очистки для удаления сероводорода и двуокиси углерода и затем осушается. Степень осушки определяется дальнейшим использованием газа (транспортированием или методом разделения). [c.26]

    Переработка реакционной смеои, полученной окислением этилбензола, производилась следующим образом. Вначале с помощью 10—15%-ного раствора соляной кислоты отмывали кобальтовый катализатор (в случае применения марганцевого катализатора извлечение его производилось 10%-ным раствором бисульфита натрия). Кислотный слой после отделения направляли на регенерацию кобальта, а углеводородный слой подвергали промывке 10—15%-ным раствором едкого натра для извлечения бензойной кислоты и фенола. Далее реакционная смесь поступала на вакуум-ректификацию, причем сначала отгоняли неокисленный этилбензол, а затем — фракцию, состоящую из ацетофенона и метилфенилкарбинола. Остаток от перегонки состоял главным образом из 2,3-дифенилбутана. Поскольку разделение ацетофенона и метилфенилкарбинола путем ректификации невозможно ввиду близости их температур кипения, применялся метод вымораживания. При этом получен высококачественный продукт, содержащий 98% и более ацетофенона. [c.193]


Смотреть страницы где упоминается термин Разделение и переработка углеводородных смесей: [c.70]    [c.34]   
Смотреть главы в:

Модернизация установок переработки углеводородных смесей -> Разделение и переработка углеводородных смесей




ПОИСК





Смотрите так же термины и статьи:

Смеси разделение

Углеводородные смеси



© 2025 chem21.info Реклама на сайте