Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсаты углеводородным газом

Рис. 6.9. Схема обезвреживания сульфидсодержащих технологических конденсатов ме годом десорбции углеводородным газом Рис. 6.9. <a href="/info/1803839">Схема обезвреживания</a> <a href="/info/382362">сульфидсодержащих технологических конденсатов</a> ме годом <a href="/info/883359">десорбции углеводородным</a> газом

    Обезвоженная и обессоленная на ЭЛОУ нефть дополнительно подогревается в теплообменниках и поступает на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны углеводородный газ и легкий бензин конденсируются и охлаждаются в аппаратах воздушного и водяного охлаждения и поступают в емкость орошения. Часть конденсата возвращается на верх колонны 1 в качестве острого орошения. Отбензиненная нефть с низа колонны 1 подается в трубчатую печь 4, где нагревается до требуемой температуры и поступает в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращается в низ колонны 1 в качестве горячей струи. С верха колонны 2 отбирается тяжелый бензин, а сбоку через отпарные колонны 3 выводятся топливные [c.184]

    Выпадение конденсата в цилиндрах компрессоров для углеводородных газов помимо возможности образования гидравлических ударов, вызывает растворение смазки и унос ее из цилиндра в промежуточные холодильники, что приводит к так называемому сухому трению, а следовательно, преждевременному износу поршневых колец и выработке зеркала цилиндра. Это явление предотвращается регулированием термодинамического режима холодильников и применением специальных труднорастворимых масляных смесей (цилиндрового масла, вапора и гудрона). Во избежание подсоса в газовые компрессоры воздуха всасывающие линии должны находиться под постоянным избыточным давлением газа. [c.312]

    Меньший показатель адиабаты углеводородных газов, по сравнению с показателем для возДуха, является причиной более низких производительности, температуры в конце сжатия и потребляемой мощности. Выделение конденсата в цилиндрах при компримировании газа приводит к вымыванию смазки и нарушает нормальную работу компрессора. Выделяющийся в промежуточных холодильниках конденсат углеводородных газов должен быть отделен от газа перед подачей в следующую ступень компрессора. [c.113]

    В установках осушки углеводородных газов водным раствором диэтиленгликоля (ДЭГ) при понижении температуры в контакторах выпадает конденсат углеводородных газов. Благодаря хорошему механическому перемешиванию ДЭГ и жидких углеводородов образуется эмульсия ДЭГ-газолин. Эмульсия образуется также в установках низкотемпературной сепарации газа при использовании ДЭГ в качестве ингибитора образования гидратов углеводородных газов. Для нормальной работы установок необходимо эмульсии разделить и выделить конденсат. [c.90]


    Циркуляционный газ подвергается очистке от сероводорода и возвращается в цикл. Для поддержания нужной концентрации водорода в циркуляционном газе перед сепаратором на компрессор постоянно подается свежий водородсодержащий газ, а часть циркуляционного газа отдувается. Отдуваемый водородсодержащий газ, предварительно нагретый в подогревателе печп, направляется в стабилизационную колонну с целью снижения парциального давления паров нефтепродукта. В колонне из дизельного топлива выделяются углеводородные газы и бензин для получения дизельного топлива с требуемой температурой вспышки. Тепловой режим колонны обеспечивается теплотой сырья, подаваемого в стабилизационную колонну. Выходящее из нижней части колонны стабильное дизельное топливо охлаждается в теплообменниках и воздушном холодильнике, после чего выводится с установки. С верха колонны отбирается бензин и углеводородный газ после охлаждения они поступают в сепаратор, в котором бензин отстаивается от водного конденсата. [c.64]

    Современные газоперерабатывающие заводы представляют комплекс крупных технологических установок, предназначенных как для подготовки газа к его дальнейшему транспорту и использованию, так и для получения сжиженных углеводородных газов, а также для переработки конденсатов газоконденсатных месторождений. На рис. 5.4 представлена структурная схема газоперерабатывающего завода (без стадий выделения этана и редких газов). [c.82]

    Очистка бензина от сероводорода осуществляется путем его продувки в колонне очищенным углеводородным газом. Водяной конденсат направляется в деаэратор для отдува сероводорода водяным паром. Конденсат, освобожденный от сероводорода, после охлаждения сбрасывается в производственную канализацию, а сероводород — в факельную линию. [c.64]

    Для проверки работы отдельных узлов технологической схемы по необходимости проводят лабораторный анализ ряда продуктов гидрогенизата после реактора, неочищенного углеводородного газа, насыщенного раствора МЭА, конденсата, насыщенного газами, нестабильного бензина и ряда других продуктов. [c.154]

    Несколько отличается от описанной установки Л-35/11-600 (см. рис. 13) система разделения газа и конденсата. После охлаждения в теплообменниках и холодильниках смесь катализата и газа разделяется в газосепараторе 4 низкого давления (I МПа). Затем газ компримируется компрессором 5 до 1,5 МПа и после смешения с катализатом из сепаратора 4 подается в газосепаратор 7 высокого давления. Из газосепаратора водородсодержащий газ распределяется следующим образом основная часть его подается на циркуляцию, часть — на гидроочистку исходного сырья (блок гидроочистки сырья на схеме не показан), а избыток — выводится с установки. Катализат освобождается от углеводородного газа в стабилизационной колонне 8. [c.47]

    В состав общей факельной системы предприятия входят газопроводы от границ технологических объектов и резервуарных парков сжиженных газов до общих факельных газопроводов (коллекторов) предприятия общий факельный газопровод (коллектор) предприятия установка сбора факельных сбросов факельные трубы трубопроводы для компримированного углеводородного газа, конденсата и другие вспомогательные трубопроводы Для связи установки сбора факельных сбросов с объектов общезаводского хозяйства. В состав установки сбора факельных сбросов входят отбойники конденсата, газгольдеры переменного объема, отбойники конденсата на приеме компрессоров, компрессоры, отбойники конденсата от воды, насосы для откачки конденсата, трубопроводы, арматура, приборы контроля и автоматизации и т. д. [c.185]

    Гидрогенизат из сепаратора 8 охлаждается в теплообменнике 9 и поступает в отпарную колонну 7. С верха колонны выводятся сероводород, углеводородные газы и водяные пары, которые после конденсации и охлаждения в аппарате 6 направляются в сепаратор 4. С низа сепаратора 4 конденсат забирается насосом 5 и возвращается в колонну 7. Головной продукт (сероводород и углеводородные газы) из сепаратора поступает в колонну 3, где он очищается от сероводорода с помощью раствора МЭА. С верха колонны 3 пары направляются во фракционирующий абсорбер 27. [c.41]

    Сжиженные углеводородные газы принято хранить либо под высоким давлением и при температуре окружающей среды, либо при низких температурах и давлении, близком к атмосферному, в емкостях цилиндрической или сферической формы. Преимуществом сферических емкостей перед цилиндрическими является меньший расход металла и более равномерное распределение напряжений в сварных швах. Сферические емкости изготовляют объемом 400, 800 и 1000 Л4 . Их рассчитывают на рабочее давление от 3 до 6 ат . Цилиндрические емкости рассчитывают на давление от 7 до 18 ат. Система хранения сжиженных газов, широко распространенная в настоящее время, состоит из емкости, компрессора, теплообменника и конденсатора. Емкость тщательно изолирована слоем шлаковаты толщиной 200—250 мм. Сжиженный газ находится в емкости под давлением 1,05 ат и при температуре от —30 до —42° С. Испаряющаяся часть его через теплообменник попадает на прием компрессора, сжимается и направляется в конденсатор. Конденсат возвращается в емкость. На дне последней находится слой жидкого осушителя — диэтиленгликоля. В момент заполнения резервуара сжиженным газом диэтиленгликоль выдавливается в буферный бачок, откуда он возвращается в емкость во время откачки содержимого резервуара. [c.173]


    Растворимостью жидких углеводородов (УВ) в природных углеводородных газах под давлением заинтересовались после открытия в 30-х годах в СЩА углеводородных залежей нового типа, так называемых газоконденсатных. В газе этих залежей растворены жидкие УВ, которые выпадают из газа в виде конденсата при снижении пластового давления. [c.30]

    На рис. 6.9 дана схема обезвреживания сульфидсодержащих технологических конденсатов методом десорбции углеводородным газом. Конденсат нагревается до температуры 95—98 С, при которой основная масса гидросульфида аммония разлагается на свободный сероводород и аммиак. Процесс проводят при давлении 0,02—0,03 МПа, расходе углеводородного газа 100 м на 1 м конденсата. Сероводород и аммиак уносятся током газа из десорбера и направляются на моноэтаноламиновую очистку. Сероводород используют в производстве серной кислоты, аммиак — как удобрение для сельского хозяйства. Очищенный конденсат сбрасывается в I систему канализации. [c.569]

    Ректификацию в атмосферных колоннах проводят при атмосферном давлении или при несколько более высоком (на величину гидравлических сопротивлений, которые преодолевает цоток паров при движении по высоте колонны, шлемовым трубам, конденсато-ру-холодильнику и др.) и при повышенном. Повышать давление в колонне необходимо при разделении компонентов с низкими температурами кипения, например углеводородных газов (пропана, бутана). При ректификации под давлением повышается температура конденсации паров дистиллятов и становится возможным использовать в конденсаторе доступный и дешевый хладоагент — воду или воздух. Например, при работе пролановой колонны при 181 МПа температура наверху 55 °С, и пропаи можно конденсировать водой. При атмосферном давлении температура выходящих из колонны паров равна 42 °С, и для их конденсации нужен дорогостоящий хладоагент. [c.40]

    Для того чтобы отвод избыточного тепла из кипящего слоя регенератора Р-2 был максимально гибким, в змеевики регенератора подается не вода, а насыщенный пар из увлажнителя Т-2. Пар, перегревшийся в первой секции змеевиков, охлаждается впрыском водного конденсата в камере Т-3 до требуемой температуры и подается во вторую секцию, где вновь нагревается. По выходе из второй секции пар идет в паровую турбину, вращающую компрессор углеводородного газа, направляемого на фракционирование. [c.201]

    Схема водной промывки циркуляционного газа показана на рис. 8.11. Чистый водный конденсат, пройдя закрытую градирню (2), насосом высокого давления подается на орошение промывателей (10), работающих под давлением. Циркуляционный газ из коллектора поступает в промыватели снизу и возвращается в цикл очищенного газа. Отработанная вода, содержащая наряду с аммиаком, некоторое количество углеводородных газов и торе происходит расслаивание, газов. [c.155]

    Продукты, образовавшиеся на первой ступени, проходят теплообменник 4, воздушный холодильник-конденсатор 6, после чего конденсат и водородсодержащий газ разделяются в сепараторе 7. Так как давление в этом сепараторе высокое ( 14 МПа), образовавшиеся сероводород, аммиак и углеводородные газы в основном остаются растворенными в катализате. В следующем сепараторе, куда поступает катализат, давление 1 МПа, а в следующем походу сепараторе - 0,2 МПа. В результате падения давления от катализата отделяются сероводород, аммиак и всё утяжеляющиеся (от Сг к С4) газообразные углеводороды. Газы очищают раствором моноэтаноламина. Блок очистки газов аналогичен описанному в разделе гидроочистка дистиллятов. [c.77]

    Развитая схема НТС представлена иа рис. 49. Сырой газ со скважин I поступает на первую ступень сепарации 1, где отделяется жидкая фаза (пластовая вода с растворенными ингибиторами и выпавший сконденсировавшийся углеводородный конденсат). Отсепарированный газ направляется в теплообменники 2, 3 для рекуперации холода сдросселированных газа и конденсата. Для предупреждения гидратообразования в поток газа перед теплообменниками подается гликоль или метанол. Охлажденный газ из теплообменников при наличии свободного пе- [c.153]

    Из колонны 13 сверху отводятся пары бензина, углеводородные газы и водяной пар они поступают в аппарат воздушного охлаждения 20, газоводоотделитель 21, где газ отделяется от конденсата бензина и воды. Бензин насосом 23 частично возвращается в колонну 13 в качестве острого орошения, а балансовое его количество направляется на стабилизацию (для отделения растворенных газов). [c.38]

    Технологическая схема установки приведена на рис. 197. В предварительный испаритель — колонну 1 поступает обезвоженная нефть I после четырех пар горизонтальных электродегидраторов (на схеме ие показаны), нагретая в теплообменниках до 210° С. Сверху этой колонны отходит легкая (до 140° С) бензиновая фракция с углеводородными газами и сероводородом. В нижнюю часть колонны 1 подается горячая струя, благодаря коюрой здесь поддерживается температура 240° С при избыточном давлении 3 ат. Кратность орошения 1,5 1. В колонне имеется 24 тарелки S-образного типа. Пары головного продукта через конденсатор-холодильник 2 поступают в емкость 9. Часть этого конденсата возвращается в колонну на орошение, а избыток перетекает в промежуточную емкость 10. Частично отбензиненная нефть из колонны 1 насосом прокачивается через змеевик печи 11 в колонну 1 как горячая струя. [c.318]

    Продукты реакции I ступени проходят систему теплообменников, воздушный холодильник 8 и водяной холодильник 7. Далее конденсат и водородсодержащий газ разделяются в сепараторе 4. Водородсодержащий газ выводится из сепаратора. Сероводород, аммиак и углеводородные газы остаются растворенными в катали-зате, так как давление в сепараторе высокое (около 13 МПа). В последующих сепараторах 3—1, куда поступает катализат, давление снижается до 9, 2 и 0,2 МПа. В результате от катализата отделяются сероводород, аммиак и углеводородные газы. Дальнейшая очистка газов раствором моноэтаноламина осуществляется в колоннах 12—14. Отработанный раствор моноэтаноламина освобождается от сероводорода в колонне 14 и возвращается в систему очистки. Стабилизация же катализата завершается в колонне 27. [c.65]

    Исходный попутный газ, содержащий через некоторое время после начала работы установки в режиме УНП от 70 до 90% (об.) СО2, сжимают до 2,4—3,1 МПа и подают на гликолевую осушку, после которой содержание паров влаги снижается до 118,5 мг/м После этого газ направляют на мембранные элементы I ступени, где основная масса СО2 переходит в поток пермеата, причем на этой стадии важно не допустить конденсации углеводородов и образования пленки жидкости на мембранах. Сами по себе жидкие углеводороды не взаимодействуют с материалом мембран, однако проницаемость может резко снизиться. Давление ретанта I ступени далее снижают, добиваясь охлаждения до 289—300 К. После того как часть углеводородов сконденсируется, конденсат отводят в сборник, а оставшийся газ нагревают до 311 К и отводят на II ступень мембранных элементов. Ретант после этой стадии представляет собой продукт — очищенный углеводородный газ с содержанием СО2 около 2—3%(об.). Во избежание потерь углеводородного сырья пермеат II ся упени сжимают до давления, превышающего давление газа, который подают на II ступень, на 0,07—0,1 МПа и направляют на III ступень мембранного разделения. [c.296]

    ГПЗ, работающие на попутном нефтяно М газе, предназначены для получения стабильного бензина, сжиженных углеводородных газов (лропана, нс рсмального бутана, изобутана или их смесей), а также сухого газа. ГПЗ, работающие на конденсате газоконденсатных месторождений, предназначены для получения бензина марок А и Б, мазута, дизельного топлива, уайтапирита и др. Наконец, ГПЗ, работающие на прнродно1М газе, осуществляют очистку и осушку газа с выделением из него серы, сажи, гелия, углекислоты и др. [c.139]

    Технологическая схема (рис. 2.4) следующая. Сырая нефть тремя параллельными потоками нагревается в теплообменниках 1 и далее пятью параллельными потоками последовательно проходит электродегидраторы 2 первой и второй ступени обессоливания. На прием сырьевого насоса в нефть вводят деэмульгатор и содо-щелочной раствор. На входе в электродегидраторы не ь смешивают с водой (используют также технологические водяные конденсаторы от атмосферно-вакуумной перегонки нефти). Обессоленная и обезвоженная нефть дополнительно нагревается в теплообменниках 1 и поступает на разделение в колонну частичного отбензинивания 3. Уходящие сверху этой колонны углеводородный газ и легкий бензин конденсируют и охлаждают последовательно в аппаратах воздушного и водяного охлаждения 4 и направляют в емкость 5. Часть конденсата возвращается на верх колонны в качестве острого орошения. Газ и бензин раздельно перетекают в сырьевую емкость 5 дебутанизатора. Огбензнненная нефть с низа колонны 3 нагревается в змеевиках печи 6. Нагретая отбензиненная нефть после печи делится на два потока пер- [c.75]

    Лигроин можно газифицировать драктически всеми известными методами. Однако для одних процессов сырьевой продукт должен быть достаточно легким и полностью очищенным известными способами от соединений серы. К таким видам исходного углеводородного сырья относятся СНГ, конденсат природного газа, легкий лигроин, лигроин с щироким интервалом температур кипения компонентов, а для некоторых процеосов газификации — и тяжелый лигроин [4]. [c.100]

    ШФЛУ отделение 540 (получение сжиженных углеводородных газов и стабильного конденсата из ШФЛУ) -4 отделение 550 (адсорбционная очистка сжиженных углеводородных газов) —> отделение 560 (получение БТ и СПБТ из сжиженных углеводородных газов). [c.70]

    В качестве абсорбентов при разделении углеводородных газов используют бензиновые или керосиновые фракции, а в последние годы и газовый конденсат, при осушке — ди этилен гликоль (ДЭГ) и триэтиленгликоль (ТЭГ). Для абсорбционной очистки газов от кислых компонентов применяют N-мeтил-2-пиppoлидoн, гликоли, пропиленкарбонат, трибутилфосфат, метанол в качестве химического поглотителя используются моно- и диэта-ноламины. [c.192]

    Осушка заводских газов требуется нс всегда. Как правило, et применяют в тех случаях, когда газ подвергается последующе низкотемпературной ректификации (например, при выделении чистого этилена) или направляется иеиосредствеиио ДЛ5[ каталитической переработки на установку с чувствительным к влаге катализатором. При низких температурах ректификации (до —100" С) водный конденсат будет выпадать даже при небольшой влажности газа. Так. для одного образца углеводородного газа, находящегося под давлением 7 ат, при содержании воды 2 г/л точк-а росы была около 14 С. а при содержаьши воды 0,17 г/с.и - всего —20 С, т. е. при темпе- [c.301]

    Сжатие тяжелых углеводородных газов часто сопровождается выделением конденсата. Конденсация возможна также при сжатии углекислого газа. В горизонтальных компрессорах для таких газов нагнетательные клапаны во избежание гидравлического удара располагают в нижней части цилгшдра или применяют наклонное расположение клапанов (рис. УП,21). [c.306]

    Устойчивость нефтяных асфальтеносодержащих систем против расслоения является предметом исследования многих авторов. Прикладное значение этих исследований состоит, например, в определении оптимального состава смесей нефть — углеводородный конденсат при их транспорте и переработке, оценке возможности расслоения в стволе скважины контактирующих нефти, конденсата и газа из различных продуктивных горизонтов и прогнозирование на этой базе снижения производительности скважин и промыслового оборудования, разработке рабочих агентов для закачки в пласт и вытеснения пластового флюида, подборе условий для осуществления процесса деасфальтизации нефтяного сырья различного фракционного состава. [c.124]

    Однако в конденсатах находятся сульфиды и гидросульфиды аммония, которые при нагревании распадаются на сероводород и аммиак. Их содержание колеблется от десятков до нескольких тысяч миллифаммов на литр, поэтому технологический конденсат можно использовать на ЭЛОУ только после специальной очистки, например, отдувки из него сероводорода и аммиака водяным паром или углеводородным газом. [c.49]


Смотреть страницы где упоминается термин Конденсаты углеводородным газом: [c.122]    [c.570]    [c.177]    [c.290]    [c.312]    [c.204]    [c.49]    [c.111]    [c.119]    [c.76]    [c.76]    [c.34]    [c.105]    [c.199]    [c.342]    [c.275]   
Очистка сточных вод (1985) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Пропановый холодильник-конденсатор газа установки низкотемпературной ректификации углеводородного конденсата

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте