Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обсуждение эмпирических распределений

    Обсуждение эмпирических распределений [c.30]

    Обсуждение эмпирических распределений 33 [c.33]

    Обсуждение эмпирических распределений частот [c.18]

    Обсуждение эмпирических распределений частот описанным выше образом может всегда давать только первые ориентировочные указания. Даже при наличии достаточного числа измерений п > 40) с достаточной надежностью можно предсказывать только явно выраженные простые явления. При анализе результатов коллективных исследований необходимо особенно много измерений (ср. пример [2.2]). Следует стремиться к тому, чтобы при совместных опытах каждая лаборатория давала примерно 30 значений. Безусловная осторожность необходима при оценке небольших эффектов, так нле как и при малом числе измерений. Здесь следовало бы (чтобы не ошибиться) обратиться к описываемому в дальнейшем математическому способу проверки (ср. разд. 7.6). [c.25]


    Шмидт и др. [290] предложили эмпирический параметр S/, позволяющий оценить влияние растворителя на константы экстракции [290] в работе [291] этот параметр обсужден в сравнении с другими параметрами полярности растворителей. Параметр S/ неоднократно применяли для количественного описания влияния растворителей на константы экстракции и коэффициенты распределения в различных системах, применяющихся в процессах экстракции [291]. [c.501]

    Как указывалось в разд. II, введение изотопа в молекулу может привести к заметным изменениям в распределении заряда. В связи с этим кажется нелогичным приступать к обсуждению изотопных эффектов, наблюдаемых в величинах кислотности или в других ионных равновесиях в растворе, не выяснив предварительно, каким образом зависимость распределения заряда от введения изотопа в молекулу сказывается на энергии и энтропии сольватации. Влияние растворителя можно было бы, вообще говоря, формально учесть путем экспериментального определения изотопных эффектов, проявляющихся в растворимости и давлении пара, а также путем изучения их зависимости от температуры и состава растворителя. С другой стороны, можно было бы ввести в уравнение (III-6) в явном виде некоторые дополнительные члены, учитывающие те внутренние движения сольватных молекул воды, которые зависят от изотопного замещения колебания водородных связей, разрывы этих связей и т. д. Оба эти подхода к проблеме учета влияния растворителя представляются, однако, малоперспективными. Поэтому при изучении влияния растворителя на вторичные изотопные эффекты нам приходится пользоваться эмпирическими величинами физической органической химии. [c.111]

    При теоретическом обсуждении реакционной способности мы будем оперировать с нейтральными формами оснований, допуская, что относительное распределение электронной плотности молекулы хотя и меняется при ионизации, но качественно остается близким к распределению к нейтральной молекуле. Такое допущение также экспериментально подтверждается при участии в реакции заряженных молекул направление реакции правильно предсказывается на основании рассмотрения нейтральных молекул. Существует ряд подходов, позволяющих оценивать относительную реакционную способность различных атомов (групп) в одной молекуле или одинаковых атомов (групп) в различных молекулах. Часть этих подходов основана на квантовохимических расчетах другая часть — на эмпирически найденных закономерностях и корреляциях. В химии нуклеиновых кислот пока больше используются подходы первого типа. Это удобно с той точки зрения, что можно делать предсказания без предварительных экспериментов, связанных с данными соединениями или с их ближайшими аналогами, используя часто закономерности, полученные для совершенно других классов соединений. Подход с использованием корреляционных уравнений требует исследования ближайших аналогов данного соединения для предсказания какого-то интересующего экспериментатора свойства. Однако аналоги оснований, нуклеозидов и нуклеотидов довольно трудно доступны, и этот метод, очень широко распростра- [c.196]


    Физические свойства каучуков определяются частично их химической природой, частично их средним молекулярным весом, и, наконец, распределением молекулярных размеров. Последний фактор до сих пор не привлекал большого внимания, но делалось много попыток разделить каучук на ряд более гомогенных фракций. Принятые методы вообще делятся на два класса 1) методы, основанные на более быстрой диффузии в растворитель низкомолекулярных компонентов, и 2) методы, основанные на равновесном распределении полидисперсных каучуков между золь- и гель-фазой с помощью жидкости, лежащей на границе растворителей и нерастворителей. Обсуждение механизма первого метода лежит вне плана этой статьи, но в принципе, во всяком случае, преимущество второго метода состоит в том, что здесь можно провести количественный анализ с помощью методов, рассмотренных выше. Эта проблема значительно сложнее любой из тех, которые уже излагались. Одним из осложняющих факторов является то, что температурный коэфициент растворимости высокомолекулярного каучука так велик, что обычно произвольно выбранная жидкость либо полностью смешивается с каучуком при всех удобных для работы температурах, либо совсем не растворяет его. Следовательно, чтобы провести фракционирование, необходимо пользоваться смесями растворителя и нерастворителя из эмпирического уравнения (42) Шульца следует, что фракционирование нужно проводить при постепенно изменяющемся составе такой смеси. Термодинамический анализ проблемы требует трактовки системы как четверной, даже если сделать упрощающее предположение, что в системе присутствует только два сорта каучука с различным молекулярным весом. Экспериментально замечено, что составы растворителя в обеих фазах совершенно различны [4], так что нельзя говорить о растворяющей смеси как об одной жидкости. Однако анализа такой системы пока еще не имеется. Шульц [48] усовершенствовал свой метод расчета [c.195]

    Яковиц и Ньюбери [176] разработали эмпирическое приближение, в основе которого лежит подгонка кривых распределения рентгеновского излучения по глубине ф(рг). Этот метод позволяет быстро определить толщину и состав тонких пленок с помощью настольного калькулятора или небольшой вычислительной машины, и он более прост в использовании, чем ранее описанные. Он предлагается для анализа тонких пленок на подложках, и обсуждение его приводится ниже. [c.60]

    Из обсуждения в разд. 1.3.2 и 1.4.2 следует, что в препаративной хроматографии используют два типа эффективности собственную эффективность колонки, которая определяется динамическими и гидродинамическими свойствами упакованного слоя, конструкцией аппаратуры, свойствами материала насадки и т. д., разделительную эффективность, которая существенно зависит от природы и количества образца и физико-химических характеристик разделительной системы. Число тарелок N используется как мера любого типа эффективности, но первая эффективность обычно определяется при идеальных, а последняя — при реальных условиях. Как отмечено выше, собственная эффективность колонки измеряется при малых нагрузках в условиях, когда изотерма адсорбции или распределения линейна (ср. разд. 1.4.4). Каждая колонка, используемая в препаративной хроматографии, должна иметь собственную эффективность, измеренную в аналитических условиях (малые нагрузки), как можно большую для данной комбинации конструкции колонки и материала насадки. Эмпирически установлено, что длина, или высота, тарелки к в эффективной колонке приблизительно равна удвоенному диаметру частиц ((/р), которыми упакована колонка. Таким образом, колонка длиной 30 см, заполненная насадкой с размером частиц 10 мкм, должна содержать примерно 15 тысяч тарелок в идеальных условиях (/1 2 р = 2-10мкм = = 20 мкм или 0,002 см 30 см//г= 15000). Частицы размером 100 мкм в той же самой колонке должны давать 1500 тарелок (30 см/(2-0,01) = 1500). Многочисленные факторы, приводящие к уменьшению этой величины для идеальной колонки, показанные на рис. 1.6, рассматриваются в работах [39—47, 50—59] и не будут здесь анализироваться подробно. [c.36]

    Довольно часто молекулярновесовое распределение в полимерах можно описать аналитическими функциями с двумя или более параметрами. В литературе описано большое число функций распределения по молекулярным весам. Одии из них были получены из рассмотрения кинетики процесса полимеризации, другие — эмпирическим путем в целях удовлетворительного описания экспериментальных кривых распределепия. Те несколько аналитических функций, которые будут использованы в дальнейшем при обсуждении обработки данных фракционирования, приводятся ниже. [c.337]


Смотреть страницы где упоминается термин Обсуждение эмпирических распределений: [c.382]   
Смотреть главы в:

Статистика в аналитической химии -> Обсуждение эмпирических распределений




ПОИСК





Смотрите так же термины и статьи:

Распределение эмпирическое



© 2025 chem21.info Реклама на сайте