Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки свойства физические

    Свойства натурального каучука. Резина. Физические и механические свойства природного каучука обусловливаются его струк- [c.210]

    Физические свойства. Физические свойства натрийбутадиенового каучука могут быть характеризованы следующими константами  [c.381]

    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]


    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-, эластических свойств полимеров. [c.14]

    Физические и химические свойства каучуков определяются содержанием в них акрилонитрила. С увеличением содержания последнего повышается плотность, понижается температура стекло- [c.356]

    Много новых направлений в химии и химической промышленности возникло в результате того, что ученые и инженеры, изучая природные вещества или наблюдая поведение изделий из природного сырья, пришли к мысли воспроизвести эти материалы в лаборатории и на производстве. Сначала они анализировали природные вещества, определяли их состав и структуру, а затем пытались синтетическим путем изготовить аналогичное по составу вещество, которое, как предполагалось, должно будет иметь и аналогичные свойства (физические, химические, механические, физиологические и т. п.). Многочисленные примеры успешно организованных производств (синтетические красители, медикаменты, синтетический каучук, бензин и т. п.) говорят о том, что это удалось ученым и что нередко полученные синтетическим путем вещества превосходят по своим свойствам природные. [c.15]


    В соответствии с дифференциацией между каучуком и резиной следовало бы провести различие между эластичностью каучука и резины, хотя оба эти свойства физически идентичны и поэтому не всегда строго различаются с точки зрения терминологии. Все же между веществом с эластичностью каучука и веществом с эластичностью резины существует следующее различие , которое может приобрести большое значение при обсуждении процессов вулканизации  [c.18]

    Термин усиливающий органический наполнитель означает органическое вещество с частицами малых размеров, которое, будучи введено в каучук, улучшает физические свойства вулканизата, т. е. предел прочности при растяжении, упруго-релаксационные свойства, сопротивление истиранию и раздиру, без существенного изменения его высокоэластичности. [c.416]

    Наиболее важной в теоретическом и практическом отношении оказалась способность многих фосфонитрильных соединений образовывать неорганические и элементоорганические высокополимеры, некоторые из которых обладают каучукоподобными свойствами. Сам факт существования неорганических каучуков уже сам по себе чрезвычайно интересен, так как здесь следует ожидать проявления новых, очень ценных свойств. Физические и [c.175]

    Углеводород каучука обладает свойствами полиенового соединения, но конфигурация изопренового остатка, высокий молекулярный вес и наличие некаучуковых компонентов вносят ряд особенностей в его химические свойства. Как правило, продукты реакций не удается выделить в чистом виде и о происходящих преврашениях чаще всего приходится судить по изменению технологических свойств. Физические константы непригодны для характеристики каучука, поскольку он представляет собой смесь различных вешеств. [c.444]

    Сбраживание мезги оказывает следующее влияние на состав сырого товарного каучука, его физические свойства и физико-механические показатели для вулканизата каучука. [c.132]

    Физические свойства гидрохлорида каучука могут быть изменены, если подвергнуть его следующей обработке лист гидрохлорида каучука нагревают до 82,0—110°, чтобы придать ему пластичность, а затем растягивают его до размеров, превышающих в 3—6 раз его первоначальную длину. Этот метод позволяет повышать сопротивление на разрыв и прочность на растяжение. [c.222]

    В настоящее в емя свыше двадцати стран мира выпускают синтетические каучуки, обладающие широким диапазоном структурных особенностей и комплексом физических свойств. [c.8]

    Результаты изучения различных физических свойств сажевых смесей показывают, что около частиц сажи, в области связанного каучука, подвижность макромолекул ограничена. Можно сказать, что в сажевой смеси существуют мягкие и жесткие области (рис. 1,6). [c.73]

    Благодаря небольшому содержанию двойных связей бутил-каучук стоек к действию кислорода. Соли металлов переменной валентности (Си, Мп, Ре) оказывают незначительное влияние на стойкость каучука [14]. При воздействии ближнего УФ-света или ионизирующих излучений он сильно деструктирует. Для стабилизации в него вводят до 0,5% антиоксиданта (неозона Д, НГ-2246, ионола). Бутилкаучук легче растворяется в углеводородах жирного ряда, чем в ароматических, нерастворим в спиртах, эфирах, кетонах, диоксане, этилацетате и растворителях, содержащих амино- и нитрогруппы. Ниже приведены некоторые физические свойства бутилкаучука [15]  [c.349]

    По физическим свойствам все полимеры можно с некоторым приближением разделить на две большие группы пластомеры, для которых характерна повышенная прочность, высокий модуль упругости и слабая растяжимость, и эластомеры натуральный и синтетические каучуки, гуттаперча, полиизобутилен и другие с малым модулем упругости и высокой эластичностью. [c.189]

    С повышением температуры в системе (а иногда в результате введения добавок) физические связи превращаются в химические (вулканизация каучука, спекание электродных масс) при этом система переходит в твердое состояние и обладает упругими свойствами. В отличие от пластических деформаций упругие деформации обратимы — после прекращения действия внешней нагрузки они исчезают. Вулканизованные углеродонаполненные каучуки характеризуются высокоэластичной деформацией — разновидностью упругой деформации. При высокоэластичной деформации — значительной деформации при относительно малых внешних нагрузках— перемещается не вся макромолекула связующего, а только та ее часть, в которой отсутствуют пространственные сшивки. [c.79]

    Стереорегулярность полимера определяет его механические, физические и другие свойства. Например, высококристаллический полипропилен обладает высокопрочными механическими свойствами и прекрасной теплостойкостью. Он может применяться в качестве конструкционного материала. В то же время полипропилен с неупорядоченным строением (атактический) представляет собой мягкий материал, напоминающий каучук. Такой полипропилен не нашел до сих пор существенного практического применения, если не считать его использования в качестве дешевой добавки к дорожному асфальту. [c.377]


    Растворители нефтяного нроисхон депия применяются также в производстве синтетического каучука. Необходимые физические свойства растворителя определяются его назначением [6]. [c.275]

    Полагаю, что изложенное оправдывает применение структонной концепции и метода аналогий для описания некоторых динамических свойств суперрешеток. Не будем вдаваться в детали, необходимые специалистам, отметим только перед тем, как перейти к сути дела, что технологическая инерция и в этих вопросах оказалась на уровне , и примерно за 30 лет, прошедших от обнаружения, и 20 лет от первых подробных описаний, упорядоченные структуры с сегрегированными доменами продолжают трактовать лишь как перспективные термоэластопласты , т. е. системы, которые в зависимости от температуры могут быть наполненными каучуками, просто физически вулканизованными резинами или, наоборот, ударопрочными твердыми пластиками. Даже такой выдающийся специалист по физической химии полимеров, как Элиас, в недавно вышедшей прекрасной книжке Mera-молекулы [41], обращаясь к этим системам, указывает лишь на возможность физической вулканизации. [c.82]

    Поскольку в рассмотренном выше механизме большая роль отводится связям между поверхностью частицы и полимером, то очевидно, что их исследование может дать дополнительную информацию о процессах, происходящих при усилении. Влияние структуры эластомера на усиление связано с эффектами. локализации напряжения, поскольку напряжение, возникающее на поверхности частиц наполнителя, является функцией упругих свойств материала. Этим объясняется то, что при равном числе сцеплений полимер — наполнитель и поперечных связей эффекты усиления различаются для разных каучуков. Преобладание физического взаимодействия между каучуком и сажей хорошо согласуется с механизмом выравнивания напряжений при растяжении. Более сильные взаимодей-стви я сделали бы невозможным отрыв цепей от частиц каучука. [c.266]

    Действие перманганата. Щелочной раствор перманганата является типичным реактивом на непредельные соединения. В 1результате взбалтывания раствора перманганата с бензольным раствором каучука происходит резкое падение вязкости последнего. После выпаривания раствора получаются продукты с различным содержанием кислорода. Окисление сопровождается деструкцией каучука, и физические свойства продуктов окисления зависят от глубины окисления и деструкции. [c.147]

    При растяжении образца сырого каучука его физические свойства значительно изменяются в четырех отношениях. Прежде всего выделяется тепло. Это явление известно под названием эффекта Гаф-Джоуля или просто Джоуля. Это изменение энергии в значительной степени обратимо — температура образца падает, если его подвергнуть сжатию. Во-вторых, плотность растянутого образца возрастает от 0,937 при нулевом удлинении до 0,950 при удлинении на 1000%. В-третьих, растянутый каучук, первоначально почти прозрачный, становится белым и опалесцирующим. Наконец, в то время как исследование сырого каучука рентгеновскими лучами дает диаграммы, типичные для жидкостей и большинства аморфных тел, при удлинении на 80% уже получаются определенные волокнистые диаграмлн.1 с соответствующим расположением пятен на кольцах описанных выше диаграмм замороженного каучука. Расноло кение этих пятен остается неизменным в течение всего процесса возрастающего удлинения, но резкость их увеличивается. Критическое удлинение, на 80%, нри котором впервые заметно обнаруживается волокнистое строение, соответствует также началу проявления эффекта Джоуля нри удлинении, меньшем этого предельного, тепло вовсе не выделяется или почти не выделяется. [c.404]

    Для получения двухкомпонентных систем с желаемыми свойствами (физическими и оптическими) необходимо выбрать метод их приготовления. Обычно такие полимерные системы состоят из двух отчетливо разделяемых фаз, причем небольшое количество частиц привитого каучука диспергировано в твердой матрице стеклообразного полимера или смолы (рис. 1). Часто две фазы образуют взаимно-проникаюш,ие сетки, и ни одна из них не является дисперсной системой (рис. 2). В зависимости от способа приготовления двухфазных систем они могут представлять собой либо механические смеси полимеров, либо привитые сополимеры. [c.168]

    Сырой каучук не слшпком прочен на растяжение и очень хрупок при низких температурах. Широкое применение каучука как эластичного материала сделалось возможным благодаря изобретению Ш. Гудьиром в 1839 г. процесса вулканизации. Он случайно открыл, что добавление серы в нагретый каучук меняет физические свойства этого материала. При вулканизации происходит сшивание поперечными связями линейных цепей полимера. С1пи-вание, вероятно, осуществляется двумя способами — насыщением двойных связей и связыванием посредством реакции присоединения групп С—Н в а-положении к двойной связи. [c.578]

    Р1зменение физических свойств каучука и колебание физических констант, характеризующих эти свойства, являются следствием неоднородности каучуков по степени полимеризации, легкой подверженности окислению и различным структурным изменениям, а также способности некоторых каучуков кристаллизоваться. Таким образом, физические свойства каучука зависят от условий получения и предшествующего хранения каучука, поэтому физические константы, приводимые разными авторами, часто значительно отличаются друг от друга. [c.88]

    Внимание Остромысленского было направлено на изыскание таких веществ, кото1рые подобно сере обладали бы способностью присоединяться к двойным связям и в то же время имели бы близкие к ней физические константы. Среди этих веществ нитросоединения оказались действительно способными сообщить каучуку свойства, подобные свойствам нормального вулканизата. К им принадлежит нитробензол, ди- и тринитро-бензол, три- и тетра нитронафталин, пикриновая и пикраминовая кислоты, пикрилхлорид, нитроциклогексан и др. Однако выяснилось, что между способиостью вещества присоединяться к двойным связям и его вулканизующим эффектом прямой связи нет. Так, пикраминовая кислота присоединяется к Двойным связям лучше, чем нитробензол, а между тем последний оказывается лучшим вулканизующим агентом. По данным Остромысленского, наиболее сильное действие проявляет 1,3,5-тринн-тробензол за ним следуют динитробензол, нитробензол и тетра-нитронафталин. В связи с этим большинство опытов как Остромысленского, так и других авторов проведено с три-и динитробензолом. [c.327]

    Щелочная обработка мезги оказывает следующее влияние на состав сырого товарного каучука, его физические свойства и физико-меха-ническне показатели для вулканизата каучука. Каучук, полученный из концентрата, выделенного центрифугированием щелочной суспензии, содержит около 3% некаучуковых веществ. По остальному составу каучук, отвечает временным техническим условиям. При повышении щелочности суспензии наблюдается увеличение содержания смол. По данным Игнатьева, обработка мезгй щелочью оказывает влияние на вязкость бензольных растворов каучука. [c.154]

    В результате облучения изменяются многие физические свойства полимеров механические, электрические и др. Направленное полезное изменение свойств полимеров в результате облучения лежит в основе технологии радиационного модифицирования материалов. По объему продукции, выпускаемой с использованием ионизирующего излучения, радиационное модифицирование полимеров занимает одно из первых мест. На основе этой технологии базируются следующие радиационно-химические процессы модифицирование полиэтиленовой и поливинилхлоридной изоляции кабелей и проводов, изготовление упрочненных и термоусаживаемых пленок, труб и фасонных изделий, получение пенополиэтилена и вулканизация полиоксановых каучуков. Ионизирующее излучение применяют также в производстве теплостойких полиэтиленовых труб и в шинной промышленности. [c.196]

    Во многих случаях желательно проводить реакции свободно-радикальной полимеризации при комнатной или даже при еще более низких температурах. Ярким примером такого типа является производство синтетического каучука, где наиболее желательными физическими свойствами обладают полимеры, получаемые нри температурах ниже 0°. Обычным методом ипициирования полимеризации при подобных условиях является применение в качестве инициатора такой комбинации реагентов, которая реагирует с образованием свободных радикалов в результате какой-либо окислительно-восстановительной реакции. Исследовано большое количество таких восстановительно-окислительных систем особенно для эмульсионной полимеризации [8, 76]. Одна из таких систем, по-видимому, типичная и довольно подробно изученная, является комбинацией иона двухвалентного железа и перекиси водорода [18]. В разбавленном водном растворе кислоты они реагируют нормально, давая гидроксилы и ионы трехвалентного железа в двухстадипном процессе  [c.135]

    Основное отличие гранс-полипентенамера от других каучуков состоит в характере кристаллизационных процессов. ТПП легко кристаллизуется при охлаждении и при растяжении, причем температура плавления кристаллов лежит в области комнатных температур, что сближает ТПП по физическим свойствам с НК. [c.63]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. E тe твeннos что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепп. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях [c.540]

    Для успешного развития этой новой и весьма обширной области науки и техники потребовалось создать целый арсенал методов научного исследования и новые технологические процессы, с учетом состава, строения и свойств высоконолимерных материалов. В разработке этих методов исследования исключительная роль принадлежит физике, физической химии и коллоидной химии. Высокомолекулярные соединения, содержащиеся в природных нефтях, весьма существенно отличаются ио строению и свойствам от таких классических представителей высокомолекулярных природных и синтетических соединений, как белок, целлюлоза, каучук, эбонит и др., но все же они имеют и много общего с последними. Поэтому многие методы исследования, разработанные в химии высокомолекулярных соединений за последние 25—30 лет, вполне применимы для исследования высокомолекулярных соединений, содержащихся в нефти. Высокомолекулярные соединения, составляющие наиболее тяжелую часть нефти, по размерам молекул относятся к начальной, самой низшей ступени обширной области высокомолекулярных природных и синтетических органических веществ. [c.11]

    При вулканизации существенно изменяются механические и физические свойства каучука увеличиваются плотность, твердость и механическая прочность, снижается остаточная деформация, улучшаются динамические свойства (сопротивляемость ударным нагрузкам), уменьшается набухаемость и каучуки теряют способность к самопроизвольному растворению. Одновременно изменяются влаго- и газопрюницаемость, диэлек- [c.439]

    Полиэфиры, образующиеся при взаимодействии пропиленгликоля и себациновой кислоты, напоминают по своим свойствам каучук и могут быть вулканизированы при помощи перекиси бензоила. Соответствующие эфиры этиленгликоля — хрупкие смолы, размягчающиеся выше 74°. Присутствие лишней метильной группы в пропиленгликоле сильно влияет на физические свойства полиэфира себациновой кислоты, например на температуру размягчения, которая лежит ниже комнатной [34]. Продукты, полученные из полиэфиров пропиленгликоля, применяют в США в качестве каучуков специального назначения. Сами по себе полиэфиры пропиленгликоля и себациновой или адипиновой кислот являются фиксированными пластификаторами. [c.371]

    Хорошая возможность регулирования пластичности и эластичности натуральных и синтетических каучуков в процессе пх получения и вулкаиизаиии делает их незаменимыми видами связующих веществ УНС специального назначения. Химические и физические свойства различных каучуков (изопреиовый, этилен-пропилеи-диеновый, хлоропреновый, бутилкаучук, уретановый и др.) изложены в специальных работах [101] и здесь не рассматриваются. [c.81]

    Физические свойства дорожных битумов, модифицированных натуральным каучуком, также в значительной мере зависят от типа сырья, из которого получен битум. Уелборн и Бабашек [14] сравнивали два венесуэльских, мидконтинентский и вайомингский битумы. При модификации натуральным латексом и серой они обнаружили большое различие в некоторых важных свойствах этих битумов. Например, введение 1% каучука приводило к увеличению дуктильности при низкой температуре до 28 см в одном битуме и до 150 см в другом. Результаты испытания смесей битумов из различного сырья и натурального латекса с серой приведены в табл. 7.2. [c.227]

    Технологи, занимающиеся эластомерами и битумом, обычно согласны с тем, что действие каучуков на битумные материалы — явление скорее физическое, нежели химическое. Для достижения эффективного действия необходимо, чтобы каучуки были хорошо диспергированы в битумном материале, однако частицы не обязательно должны иметь коллоидные размеры. Нужно, чтобы частицы эластомера набухали в битумном материале, но не слишком сильно. Если эластомер очень стоек к набуханию, значит, он по существу инертен. Действительно, если ввести достаточное количество ненабухающего эластомера, то смесь может стать каучукоподобной, но только за счет того, что каучук служит составной частью или наполнителем. Наиболее пригодны эластомеры, которые набухают, но остаются диспергированными в битумной фазе. С другой стороны, каучуки, растворимые в битумном материале, также не являются эффективными модификаторами. При их введении в достаточном количестве вязкость смеси повышается (как у резинового клея), но она не приобретает таких свойств, как эластичность и жесткость. Неэффективны также деполимеризующиеся каучуки. Они не только переходят в раствор в битуме, но низкомолекулярные продукты их [c.229]

    Каменноугольный деготь в дорожных покрытиях. Смеси камен ноугольного дегтя с каучуком используют в дорожных покрытиях, стойких к действию реактивного топлива, и в смесях для герметизации стыков в цементобетоне. Благодаря введению эластомера повышается сопротивление изменению физических свойств от температуры. Деготь в большей степени, чем битум, хрупок при низкой температуре и излишне мягок при высокой температуре. Нит-рильные каучуки в виде крошки или гранул чаш,е всего используют во взлетно-посадочных полосах и площадках для стоянки самолетов, где происходит утечка авиационного топлива. [c.239]

    Холодная вулканизация заключается в том, что каучук погружают в раствор S2 I2 в сероуглероде нли, чаще (ввиду огнеопасности н токсичности S2),B легком бензине. При itom молекулы каучука присоединяют серу. Еще чаще применяется горячая вулканизация, при которой каучук смешивают с серой и нагревают смесь при 135—140°, обычно непосредственно в прессах, обогреваемых паром. В результате вулканизации физические свойства продукта заметно изменяются он переходит из термопластр чного в высокоэластичное состояние и приобретает нерастворимость в алифатических, ароматических и хлорированных углеводородах. [c.952]

    К смешению можно условно отнести еще два процесса, характерных, однако, для однокомпонентных систем. Один из них — регулирование МБР в процессе механической обработки (пластикации) полимера, например натурального каучука, открытое Т. Хенку-ком — изобретателем смесителя закрытого типа (см. гл. 1), Второй, более специфичный процесс — это снижение эластичности расплава ПЭНП, сопровождающееся улучшением некоторых его оптических и физических свойств. Молекулярный механизм этого явления за- [c.367]


Смотреть страницы где упоминается термин Каучуки свойства физические: [c.327]    [c.279]    [c.42]    [c.188]    [c.488]    [c.385]    [c.13]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.632 , c.635 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки свойства



© 2025 chem21.info Реклама на сайте