Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тангенциальные движения

    Иногда на обычных полярограммах наблюдаются превышения тока над предельным током диффузии. Эти явления называются полярографическими максимумами. Ток в максимуме может превышать в десятки и даже сотни раз. Максимумы на поляризационных кривых наблюдаются для жидкой ртути и исчезают при ее замерзании, хотя все другие условия электролиза остаются постоянными. Это обстоятельство указывает на то, что полярографические максимумы связаны с тангенциальными движениями ртутной поверхности. [c.188]


    Полярограммы могут быть искажены за счет полярографических максимумов — резкого возрастания тока выше предельного значения его с последующим спадом. Причины возникновения максимумов различны, и могут быть связаны с неравномерной поляризацией ртутной капли и тангенциальным движением ее поверхности, что приводит к дополнительному перемешиванию раствора. Такого рода максимумы можно устранить введением в полярографируемый раствор ПАВ красителей (метиловый красный, фуксин и др.), высокомолекулярных соединений (агар-агар, желатин). ПАВ адсорбируются на поверхности ртутной капли, изменяют ее поверхностное натяжение, устраняя неравномерное движение приповерхностных слоев. Кроме того на полярограммах возникают кислородные максимумы растворенный в анализируемом растворе кислород восстанавливается на ртутном электроде в две стадии  [c.142]

Рис. 3.23. Схема развития процесса сгорания в неразделенной камере при наличии тангенциального движения воздушного заряда Рис. 3.23. <a href="/info/73092">Схема развития</a> <a href="/info/106975">процесса сгорания</a> в <a href="/info/1471880">неразделенной камере</a> при наличии <a href="/info/10776">тангенциального движения</a> воздушного заряда
    Согласно теории В. Г. Левича [4], адсорбция поверхностно-активных веществ на границе раздела двух фаз приводит к затормаживанию тангенциального движения на поверхности пузырьков, в результате чего скорость движения пузырьков снижается. [c.20]

    Одна из существенных помех, которая возможна при полярографических определениях с ртутным капающим электродом, — образование полярографических максимумов. Значительную роль в их образовании играют тангенциальные движения поверхности ртутной капли, перемешивающие раствор и усиливающие подачу в зону реакции электродноактивного вещества. Движение поверхности капли возникает при быстром втекании ртути в каплю и из-за неравномерного распределения поверхностного натяжения вследствие неравномерной поляризации поверхности капли (экранирующий эффект капилляра). Подобные максимумы носят название максимумов первого рода ОНИ наблюдаются для данного иона при ограниченных значениях потенциала и обуславливают существенное увеличение тока. [c.295]

    Современная физическая теория полярографических максимумов была развита Фрумкиным и его школой. Рассмотрим основы этой теории с качественной стороны, а затем перейдем к обсуждению некоторых количественных соотношений. Так как причины тангенциальных движений, вызывающих полярографические максимумы, могут быть различными, то выделяют несколько типов или родов максимумов. [c.188]


    Изменения в поверхностной плотности адсорбирующегося вещества, вызываемые конвективным переносом его при движении поверхности, должны частично выравниваться за счет диффузии вещества из объема раствора. В результате торможение тангенциальных движений органическим веществом должно быть пропорционально Г /с, где Г — адсорбция с — объемная концентрация органического вещества. Поскольку при увеличении молекулярной массы в гомологических рядах адсорбируемость растет согласно правилу Траубе при удлинении цепи на одну группу СНа приблизительно в три раза, то торможение максимума органическим веществом должно расти не в 3, а в 3 =9 раз. Поэтому одинаковый эффект торможения должен получаться для вещества с более двойной цепью при девятикратном разбавлении, что и наблюдается на опыте. [c.192]

    Иногда адсорбция органических веществ может приводить к появлению так называемых полярографических максимумов 3-го рода. Эти максимумы наблюдаются при проведении реакций электровосстановления в присутствии камфоры, борнеола, адамантанолов и некоторых других органических веществ, которые проявляют большую поверхностную активность в малой концентрации и адсорбция которых сопровождается двумерной конденсацией. Тангенциальные движения при этом обусловлены градиентом пограничного натяжения, который возникает между свободными участками ртутной поверхности и ее участками, покрытыми конденсированной пленкой органического вещества. Характерный вид полярографических кривых, искаженных максимумами 3-го рода, приведен на рис. 104. При малых концентрациях органического вещества на полярограмме наблюдается один максимум вблизи потенциала максимальной адсорбции. При увеличении концентрации органического вещества этот максимум расщепляется и полярограмма искажается двумя максимумами, расположенными в области потенциалов адсорбции — десорбции. Сопоставление адсорбционных и кинетических измерений показывает, что полярографические максимумы 3-го рода всегда соответствуют средним заполнениям поверхности органическим веществом (0 0,3- 0,6), а форма [c.192]

    Создание количественной теории полярографических максимумов 1-го рода встречает значительные математические трудности, которые вызваны главным образом сложными геометрическими условиями. Строгая теория тангенциальных движений была разработана для свободной капли в электрическом поле. Рассмотрим вначале идеально поляризуемую каплю (рис. 105, а). Если ртутная капля в электролите оказывается во внешнем электрическом поле, то она приходит в движение. Механизм этого движения отличается от механизма электрофореза, а скорость его может превышать скорость электрокинетического движения при равных условиях на пять порядков. Из-за наличия двойного электрического слоя ток, проходящий через раствор, обтекает каплю и распределение электрических силовых линий вне двойного слоя оказывается таким же, как и вблизи изолятора. Однако внутри капли благодаря металлической проводимости потенциал остается постоянным. Чтобы это условие выполнялось, скачок потенциала в правой части капли должен быть выше, чем в левой. В результате возникает градиент пограничного натяжения, который приводит к вихревым движениям в капле (рис. 105, б). Эти движения вызывают реактивное отталкивание капли от окружающей среды и движение положительно заряженной капли по направлению поля, а отрицательно заряженной — в обратном направлении. Скорость этого движения [c.193]

    Если на поверхности капли протекает электродный процесс, то скорость тангенциальных движений также может быть рассчитана при условии, что существует линейное соотношение между плотностью тока, проходящего через границу металл — раствор, и изменением разности потенциалов Аф Дф=—wi, где — поляризуемость электрода. В этих условиях [c.194]

    Поскольку ток на вращающемся дисковом электроде пропорционален концентрации реагирующего вещества, этот электрод может быть использован для аналитических целей. Количественный анализ раствора можно выполнять и при помощи других электрохимических методов, например, при помощи полярографического метода на ртутном электроде. Однако ртутный электрод нельзя использовать в анодной области потенциалов, так как ртуть при этом подвергается анодному растворению. Вращающийся диск можно приготовить из любого твердого металла, например из благородных металлов, которые устойчивы в анодной области потенциалов и потому позволяют изучать анодные процессы. Кроме того, на твердых электродах отсутствуют тангенциальные движения поверхности и связанные с ними искажения поляризационных кривых, которые наблюдаются на жидких электро- [c.181]


    Так как причины тангенциальных движений, вызывающих полярографические максимумы, могут быть различными, то выделяют несколько типов или родов максимумов. [c.200]

    Тангенциальные движения поверхности ртути, вызывающие максимумы 1-го рода, обусловлены тем, что в разбавленных растворах потенциалы различных участков капли неодинаковы, так как плотность тока на разных участках капли различна. Последнее явление вызывается неодинаковой доступностью различных участков поверхности, например, шейки и нижней части капли. Из-за различия в потенциалах [c.201]

    В некоторых случаях адсорбция органических веществ может приводить к появлению так называемых полярографических максимумов 3-го рода. Зги максимумы наблюдаются при проведении реакций электровосстановления в присутствии камфоры, борнеола, адамантанолов и некоторых других органических веществ, проявляющих большую поверхностную активность в малой концентрации. Тангенциальные движения в этом случае обусловлены градиентом пограничного натяжения, возникающим в результате неодинаковой скорости подачи адсорбирующегося вещества к различным участкам капли. Хорошо выраженные максимумы 3-го рода получены только в присутствии определенных веществ. [c.205]

    Создание количественной теории полярографических максимумов 1-го рода встречает значительные математические трудности, которые вызваны главным образом сложными геометрическими условиями. Строгая теория тангенциальных движений была разработана для свободной капли в электрическом поле. Рассмотрим вначале идеально поляризуемую каплю(рис. 105,а). [c.205]

    В определенных условиях полярограммы искажаются полярографическими максимумами, высота которых может в десятки и даже сотни раз превышать высоту предельного диффузионного тока. Различают несколько видов максимумов. Максимумы 1-го рода имеют форму четко выраженных пиков и наблюдаются при положительных или отрицательных зарядах поверхности в разбавленных растворах. При повышении концентрации фонового электролита эти максимумы исчезают. Максимумы 2-го рода, наоборот, сильнее выражены в концентрированных растворах фонового электролита. Эти максимумы более пологие, наибольшее значение тока достигается при потенциале нулевого заряда. Максимумы вызваны тангенциальными движениями ртутной поверхности, приводящими к размешиванию раствора и усилению доставки реагирующего вещества к электроду. Тангенциальные движения, вызывающие максимумы 1-го рода, обусловлены разницей в потенциалах, а следовательно, и в пограничных натяжениях различных участков капли, например шейки и дна капли, вследствие [c.183]

    На использовании ртутного капельного электрода основан адсорбционный полярографический анализ. Если в растворе присутствуют небольшие количества поверхностно-активных органических веществ, то их адсорбция на ртутном капельном электроде тормозит тангенциальные движения его поверхности и подавляет полярографические максимумы. При определенных условиях по относительному снижению полярографических максимумов 2-го рода можно обнаружить в растворе 10-8—10- моль/л поверхностно-активных органических веществ. [c.232]

    Иногда на обычных полярограммах наблюдаются превышения тока над предельным током диффузии. Эти явления называются полярографическими максимумами. Ток в максимуме может превышать а в десятки и даже сотни раз. А. Н. Фрумкин и Б. П. Брунс впервые высказали предположение, что возникновение тока, превышаюш,его обычный предельный ток диффузии, связано с размешиванием раствора, вызываемым тангенциальными движениями ртутной поверхности. Такие движения можно наблюдать визуально на ртутном электроде (В. Зейдель, X. Антвейлер). Максимумы на поляризационных кривых наблюдаются для жидкой ртути и исчезают при ее замерзании, хотя все другие условия электролиза остаются постоянными. [c.200]

    Эмпирически было установлено, что максимумы 1-го и 2-го рода могут быть устранены, если в раствор добавить органическое вещество, которое достаточно хорошо адсорбируется в широкой области потенциалов. Снижение полярографических максимумов в присутствии органических веществ объясняется изменением поверхностной концентрации адсорбированных молекул при движении ртутной поверхности. Например, при движении ртути от пижней части к шейке капли происходит растяжение поверхности нижней части капли, поверхностная концентрация адсорбированного вещества на этом участке понижается, а пограничное натяжение соответственно повышается. Наоборот, в верхней части капли происходит увеличение поверхностной концентрации органического вещества, снижающее пограничное натяжение. Поэтому возникает сила, действующая в направлении от шейки к нижней части капли и вызывающая ослабление, а в определенных условиях и полное прекращение тангенциальных движений поверхности. Кроме того, необходимо учитывать, что в области адсорбции органического вещества электрокапиллярная кривая становится, как правило, более плоской и различия в пограничном натяжении между разными участками капли уменьшаются. [c.204]


Смотреть страницы где упоминается термин Тангенциальные движения: [c.318]    [c.158]    [c.171]    [c.48]    [c.58]    [c.171]    [c.189]    [c.192]    [c.194]    [c.194]    [c.194]    [c.206]    [c.206]    [c.206]    [c.171]    [c.189]    [c.192]    [c.194]    [c.194]    [c.194]   
Смотреть главы в:

Основы полярографии -> Тангенциальные движения




ПОИСК







© 2025 chem21.info Реклама на сайте