Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд поверхности и адсорбция органических веществ

    При рассмотрении возможности использования органических веществ, распадающихся на ионы, в качестве ингибиторов коррозии следует учитывать как заряд самого иона, так и заряд металлической поверхности. Если стационарный потенциал лежит в области более отрицательных значений по сравнению с потенциалом нулевого заряда, то адсорбция органических катионов вследствие действия электростатических сил облегчается, и можно от такого ингибитора ожидать защитного эффекта. При положительном заряде поверхности адсорбция органического катиона затруднена и защитного действия от такого вещества ожидать нельзя. [c.26]


    Итак, метод измерения дифференциальной емкости позволяет определять п. н. 3., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с постоянной ионной силой. Метод применим как к жидким, так и к твердым электродам и является чрезвычайно чувствительным к любым изменениям в строении двойного электрического слоя. Последнее обстоятельство предъявляет очень высокие требования к чистоте исследуемых этим методом металлов и растворов. Существенным препятствием для использования метода измерения емкости является возможность протекания электрохимических реакций на границе электрод — раствор. [c.60]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]

    Итак, метод измерения дифференциальной емкости позволяет определять т. н. з., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с по- [c.66]

    Однако, если атомы водорода в молекулах этих соединений замещены атомами галоидов, то ситуация резко изменяется. Так, замена Н на F приводит к тому, что поверхностная активность органического вещества оказывается выше на границе раствор/ воздух, а замена Н на С1, Вг или I приводит, наоборот, к более высокой поверхностной активности на границе раствор/ртуть, причем эффект возрастает при переходе от хлора к брому и далее к йоду. Полученные результаты указывают на то, что специфическое взаимодействие с поверхностью ртути растет в ряду F< < H< i< Br< I. Причиной этого является усиление в том же ряду донорно-акцепторного взаимодействия между органической молекулой и поверхностью ртути, при котором электроны с атомов С1, Вг и I могут переходить на уровни зоны проводимости металла. Поэтому одновременно с увеличением поверхностной активности происходит соответствующее изменение сдвига потенциала нулевого заряда А д=о, вызванного адсорбцией органического вещества уменьшение положительного, а затем рост отрицательного значения Д д=о. [c.42]


    Простейшим свидетельством сложного деструктивного характера адсорбции органических веществ является состав продуктов, часто выделяющихся при их контакте с электродами из металлов группы платины в условиях разомкнутой цепи. При введении органического вещества в раствор, омывающий электрод, предварительно поляризованный до потенциалов двойнослойной области, нередко визуально, в других случаях после анализа газовой фазы, можно определить образование газообразных продуктов (например, опыты 2 и 5 табл. 3.1). Поскольку Наде и Оадс на поверхности металла-катализатора в момент введения органического вещества практически отсутствовали и заряды к электроду извне не подавались, этот результат свидетельствует о сложном превращении молекул исходного вещества. [c.86]

    Одним из наиболее важных моментов теории адсорбционной поляризации следует считать положение о том, что торможение при переносе заряда, если 0 i= 1, не может быть сведено только к блокировке поверхности и к изменению г з1-потенциала в результате адсорбции органических веществ на электроде. В этих условиях на первый план выступает взаимодействие участников электродной реакции (прежде всего ионов металлов) с адсорбированными [c.39]

    При столь высоких отрицательных зарядах алюминия частицы органических веществ будут вытесняться с его поверхности молекулами воды и ионами калия. Кальций в этих условиях может адсорбироваться даже предпочтительнее калия и способствовать адсорбции органических веществ. Судя по литературным данным, эффективными являются также органические соединения, которые, как минимум, обладают двумя функциональными группами, позволяющими им устанавливать связь как с кальцием, так и с алюминием. В ряду аналогичных соединений эффективность возрастает по мере увеличения числа группы ОН от одного до трех. По-видимому, наличие такого числа групп необходимо для создания связей органических веществ адсорбированными ионами кальция и с поверхностными атомами алюминия и для образования поверхностных хелатных соединений. [c.90]

    Адсорбция органических веществ на металле из ра-V створа зависит от многих факторов и, прежде всего,от заряда поверхности металла или, в некотором прибл 1же-нии, от его потенциала, выраженного в приведенной или ф-шкале потенциалов [154-159]. [c.68]

    Изменить способность металла адсорбировать ингибиторы можно, вводя в среду композиции, состоящие из неорганических веществ (окислители, соли металлов) и органических ингибиторов, а также изменяя заряд поверхности металла поляризацией. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосорбированных слоев ингибитора с металлом. Благодаря изменению заряда корродирующего металла, вызванного смещением нулевой точки от ее положения для корродирующего металла до потенциала нулевого заряда металла, выделяющегося из неорганического компонента, увеличение защитного действия комбинированных ингибиторов может быть весьма значительным. При наложении поляризации от внешнего источника тока или от создаваемого гальванического элемента из защищаемого металла и другого, более электроотрицательного металла, повышение эффективности действия ингибиторов достигается вследствие смещения потенциала коррозии в отрицательном направлении при неизменном потенциале нулевого заряда. В случае смещения потенциала металла в отрицательном направлении при электрохимической катодной защите облегчается адсорбция катионных органических веществ, возрастают поверхностная концентрация таких ингибиторов и их ингибирующее действие. [c.325]

    Потенциал электрода влияет на заряд поверхности катода, изменяет условия адсорбции молекул. Органические вещества в большинстве своем малополярные и лучше адсорбируются на незаряженной поверхности в область потенциала нулевого заряда. Область адсорбции неорганических веществ, часто хорошо диссоциирующих в ионизирующих растворителях, определяется зарядом восстанавливаемого иона. Учет влияния заряда поверхности электрода на направление и скорость катодного процесса особенно важен для реакции гидродимеризации [18, 19]. [c.9]

    В работе [42] было показано, что адсорбция органических веществ при больших положительных зарядах поверхности, которая отсутствует в случае соединений, не обладающих я-электро-нами, возрастает с увеличением числа двойных связей (см. табл. 2). [c.186]

    Из сказанного следует, что к определению положения максимума адсорбируемости нейтральных молекул относительно точки нулевого заряда в случае платинового электрода и, по-видимому, в случае других металлов, адсорбирующих водород, неприменимы соотношения, выведенные для ртутного электрода. В то время как точка нулевого заряда платины лежит в водородной области, потенциал максимальной адсорбции благодаря десорбирующему действию водорода должен быть смещен в двойнослойную область. Величина этого смещения лимитируется появлением на поверхности не только положительных зарядов, но и адсорбированного кислорода. Взаимное влияние адсорбции органического вещества и кислорода не может быть рассмотрено термодинамическими методами из-за необратимости адсорбции кислорода, но не подлежит сомнению, что присутствие последнего также снижает адсорбируемость органических молекул. [c.247]


    Другие теории адсорбции органических веществ ira электродах отличаются от теории Фрумкина либо видом уравне ия состояния, передающего связь между поверхностным натяжением и поверхностной концентрацией, либо типом изотермы адсорбции, описывающей зависимостз поверхностной концентрации органического вещества от его концентрации в объеме. Кроме того, в теории Фрумкина в качестве параметра, характеризующего электрическое состояние электрода, выбран потенциал. По Парсонсу, Деванатхаиу и ряду других ученых, таким параметром должен быть не потенциал, а заряд поверхности электрода. [c.248]

    Изменять способность металла адсорбировать ингибиторы можно, изменяя заряд поверхности поляризацией от внешнего источника тока и с помощью специальных добавок. В частности, сместить потенциал нулевого заряда в положительную сторону можно с помощью галогенид-ионов, сульфид-ионов, а также окислением поверхности металла кислородом или другим окислителем. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосор-бированных слоев ингибитора с металлом. [c.91]

    Электрохимические процессы с участием органических веществ часто проводят в неводных растворителях, так как в воде многие органические вещества слабо растворимы. Природа растворителя прежде всего сказывается на константах скорости реакции к и адсорбционного равновесия В . От природы растворителя зависит и коэффициент активности реагирующих молекул. При переходе от одного растворителя к другому при =сопз1 изменяется заряд поверхности, что приводит к изменению ф потенциала и, соответственно, скорости электродного процесса. Наконец, от природы растворителя зависят величины и На скорость электродных процессов с участием органических веществ влияет природа металла. При переходе от одного металла к другому изменяются энергия адсорбции органических веществ и молекул воды, 1 31-потенциал и потенциал максимальной адсорбции Ет- В меньшей степени зависит от природы электрода отношение ( < 0—К ) 2НТТ . Так, например, для ртути, кадмия и висмута этот коэффициент для одного и того же вещества оказывается примерно одинаковым. [c.383]

    Во-вторых, при адсорбции органических веществ изменяется заряд поверхности при данном потенциале, а следовательно, изменяется и г151-потенциал. Так, при адсорбции органических катионов можно принять, что в первом приближении 1 з1-потенциал линейно зависит от степени заполнения поверхности  [c.390]

    Адсорбция органических веществ может приводить к ускорению электродных процессов. Так, реакции электровосстановления анионов при отрицательных зарядах поверхности ускоряются в присутствии катионов тетраалкиламмониев (см. рис. 145). Это явление можно объяснить на основании уравнения (52.2) теории замедленного разряда, если учесть, что zo < О, а при специфической адсорбции катионов 11з1-потенциал сдвигается в положительную сторону. Принимая, что в первом приближении при адсорбции органических катионов выполняется уравнение (71.3), получаем экспоненциальное возрастание скорости электровосстановления анионов при заполнении поверхности катионами  [c.391]

    В правой части этого соотношения производная, стоящая за квадратными скобками, либо положительна, либо равна О (при предельном заполнении поверхности органическим веществом). Следовательно, знак изменения Горг с потенциалом определяется соотношением производных (<ЗЛн/<ЗГорг) и (дд/дТо т). Максимальные значения Лн на металлах группы платины примерно на порядок выше максимальных значений свободного заряда, поэтому первый член в квадратных скобках уравнения (3.51), очевидно, имеет определяющее значение для зависимости Горг от Ег. Величина (<ЗЛн/(ЗГорг) отрицательна, поскольку молекулы адсорбирующегося органического вещества занимают места адсорбированного водорода. Из уравнения (3.51) вытекает, что при потенциалах адсорбции -водорода (( Горг/<3 г)—величина положительная, т. е. в водородной области Ег величины адсорбции органического вещества с ростом Ег должны возрастать. Для установления влияния адсорбции кислорода достаточно учесть, что адсорбция кислорода при условии Гн,о = 0 может рассматриваться как отрицательная адсорбция водорода - Л = — с(Лн, [c.108]

    Изменить способность металла адсорбировать ингибиторы можно введением в среду композиций, состоящих из неорганических веществ (окислителей, солей металлов) и органических ингибиторов, а также изменяя заряд поверхности металла поляризацией. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосорбироваиных слоев ингибитора с металлом. Благодаря изменению заряда корродирующего металла, вызванного смещением нулевой точки от ее положения для корродирующего металла до потенциала нулевого заряда для металла, вьщеляющегося из неорганического компонента, увеличение защитного действия комбинированных ингибиторов может быть весьма значительным.  [c.145]

    Следует, однако, иметь в виду, что окисление поверхности сдвигает часто и стационарный потенциал металла в положительную сторону, поэтому предсказать, какой заряд приобретает металл, трудно. Все зависит от того, какой потенциал изменится при окислении металла сильнее— стационарный или потенциал нулевого заряда. Таким образом, влияние окислителей на абсорбцию органических веществ является неоднозначным. Швабе [69], например, отмечает, что появление окислов на поверхности металла приводит к изменению характера адсорбции органических веществ. Дибензилсульфооксид и нитрит дициклогексиламмония хорошо адсорбируются на неокисленной поверхности железа и являются хорошими ингибиторами коррозии. На окисленной же поверхности эти вещества не проявляют ингибирующих свойств. По мнению автора, это связано с тем, что в первом случае возникают хемосорбированные слои ингибитора с металлом, а во втором — на окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и легко вытесняются с поверхности молеку- [c.130]

    Следует заметить, что эти расчеты не всегда являются корректными, поскольку изменение коррозионного тока может зависеть не только от степени покрытия поверхности, но и от изменения скорости процесса на открытой поверхности как будет показано ниже, адсорбция органических веществ часто изменяет константу скорости реакции к, адсорбционный потенциал о] , а через него заряд поверхности, что совершенно не учитывается в уравнениях для расчета степени заполнения поверхности. Это приводит к расхождению результатов, получаемых разными методами. Однако в некоторых случаях различия в степенях заполнения поверхности органическими веществами, рассчитанные из кинетических характеристик и по данным прямых измерений количества адсорбированного вещества, например радиоактивными индикаторами, совпадают. Такие случаи наблюдал Багоцкий с сотр. [78] при исследовании адсорбции высших алифатических спиртов и спиртов изо-строения на гладком платиновом электроде. При строгих количественных расчетах необходимо учитывать изменение со степенью заполнения как константы скорости реакций к, так и )1-по-тенциалы. В первом приближении можно считать, что в области средних заполнений [c.142]

    При изучении соосаждения сурьмы с оловом из борфто-ридно-тартратных и хлоридно-фторидных растворов [119] было установлено, что без органических добавок на катоде преимущественно выделяется сурьма,. как и следует ожидать из расположения поляризационных кривых отдельных компонентов. Олово начинает выделяться лишь в результате достижения предельного тока по ионам сурьмы. Это свидетельствует о том, что деполяризующий эффект сплавообразова-ния действительно не проявляется при совместном осаждении сурьмы с оловом. Высказано мнение [119], что большее-торможение органическими добавками выделения сурьмы по сравнению с выделением олова обусловлено более положительным потенциалом нулевого заряда ее поверхности, что приводит к отрицательному заряду электрода в условиях электроосаждения вместо положительного, как в случае олова. В результате на сурьме должна быть хменьше электростатическая адсорбция анионов, в частности хлорид-ионов, что способствует адсорбции органических веществ. Изменение тормозящего действия добавок при совместном осаждении сурьмы и олова по сравнению с раздельным может быть связано именно с изменением потенциала нулевого заряда поверхности сплава по сравнению с отдельными компонентами, что изменяет область адсорбции органических поверхностноактивных веществ. [c.264]

    Особенность анодных процессов состоят в том, что кроме заряда поверхности на адсорбцию органических молекул влияет адсорбция кислорода и кислородсодерл ащих частиц. Для платины установлено, что максимум адсорбции, органических веществ в области двойного слоя приходится на 0,4—0,8 В. При 0,7—0,9 В начинается хемосорбция кислорода на поверхности, вследствие чего адсорбций органических молекул резко падает, доходя почти до нудя при 2,1 — 2,4 В, т. е. при потенциалах, отвечающих монослойному окисному покрытию [90, 91]. Однако присутствие хемосорбированного кислорода на поверхности не создает непреодолимых преград для адсорбции органических молекул. При высоких анодных потенциалах на платине обнаружены [88, 92] два интервала потенциалов высокой адсорбции нейтральных молекул 2,0 -ь 2,3 и около 2,8 В. Установленное явление делает реальным протекание окисления через адсорбцию органических молекул на поверхностных окислах [93] и указывает на возможность интенсивного ведения процесса электрёхимическрго окисления при высоких анодных потенциалах. [c.36]

    Если в качестве независимой электрической переменной выбрать потенциал, то при условии, что адсорбция органического вещества на поверхности электрода не осложнена образованием по-лислоев или мицеллярных пленок, заряд поверхности является функцией только потенциала электрода и степени заполнения  [c.15]

    Подчеркивание того обстоятельства, что при рассмотрении зависимости адсорбции от природы адсорбирующегося вещества следует учитывать конкуренцию с адсорбцией воды, несомненно, правильно. В самом деле, не учитывая конкуренции между адсорбцией воды и органического вещества, нельзя было бы объяснить тот факт, что некоторые органические вещества адсорбируются слабее на границе раствора со ртутью, чем на границе раствора с воздухом. Так, электрокапиллярные измерения Фрумкина, Кузнецова и Каганович [38] показали, что адсорбируемость нерфто-рированных жирных кислот при переходе от границы с воздухом к границе со ртутью уменьшается в 15—50 раз. Учет вытеснения воды при адсорбции органического вещества необходим также для обоснования применимости изотермы Ленгмюра к адсорбции на поверхности раствора [30]. Однако предложенный Бокрисом, Деванатханом и Мюллером способ расчета зависимости адсорбции, от заряда вызывает ряд возражений. Так, зависимость свободной энергии адсорбированного слоя воды от заряда определяется не [c.184]


Смотреть страницы где упоминается термин Заряд поверхности и адсорбция органических веществ: [c.178]    [c.19]    [c.25]    [c.37]    [c.215]    [c.134]    [c.220]    [c.19]    [c.184]    [c.12]   
Электрохимия металлов и адсорбция (1966) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция органических веществ



© 2025 chem21.info Реклама на сайте