Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капля движение поверхности

    Вест допускает, что межповерхностный барьер может также изменять механизм массопередачи, а не только оказы вает сопротивление проникающим молекулам, противодействуя им движением поверхности (волнение, сплющивание). В случае капли это приводит к устойчивости ее формы. Экстрагирование проходит тогда со скоростью, приближающейся к скорости молекулярной диффузии. [c.56]

    Для массопередачи между внутренними слоями маленького пузырька (или капли) и поверхностью число Шервуда колеблется в пределах 10 < ЗЬ < 25. Меньшей величиной пользуются, когда внутренняя среда инертна, а большую применяют при свободном внутреннем движении 9в-э8 Для тонкой пленки жидкости, стекающей по насадке, число 8Ь лежит в указанном интервале. [c.154]


    В действительности, дополнительно к описанному механизму работает еще механизм слияния разноименно заряженных капель при их движении в промежутке (рис. 1.6.). Капли, достигая поверхности электрода, заряжаются по индукционному механизму и, отрываясь от поверхности электрода, двигаются вглубь промежутка. Если расстояния между электродами небольшие, то капли не успевают полностью потерять свой заряд за счет утечки. Слияние разноименно заряженных частиц происходит в случае их столкновения. [c.16]

    На стадии конденсации заметную роль играет коагуляция, в частности, кинематическая коагуляция приводит к замедлению движения крупных капель, увеличивает скорость их тепловой релаксации. Процесс конденсации пара из парогазовой смеси, лимитируемый конвективной диффузией пара в среде, будет иметь различную интенсивность для одиночной капли и каили, движущейся с другими каплями. При групповом движении возрастает степень турбу-лизации газообразной среды, а также конвективный поток пара на каплю. На стадии испарения на радиационные характеристики поглощающей среды оказывают влияние капли, расположенные между контрольной каплей, и поверхностью теплообмена. [c.25]

    Одна из существенных помех, которая возможна при полярографических определениях с ртутным капающим электродом, — образование полярографических максимумов. Значительную роль в их образовании играют тангенциальные движения поверхности ртутной капли, перемешивающие раствор и усиливающие подачу в зону реакции электродноактивного вещества. Движение поверхности капли возникает при быстром втекании ртути в каплю и из-за неравномерного распределения поверхностного натяжения вследствие неравномерной поляризации поверхности капли (экранирующий эффект капилляра). Подобные максимумы носят название максимумов первого рода ОНИ наблюдаются для данного иона при ограниченных значениях потенциала и обуславливают существенное увеличение тока. [c.295]

    Формула (37.12) является приближенной не только потому, что был учтен лишь первый член уравнения (37.7), но главным образом потому, что при ее выводе было использовано решение для неподвижного электрода, а рост сферы учитывали только при определении поверхности. В действительности из-за движения поверхности навстречу потоку диффузии истинная толщина диффузионного слоя оказывается меньше, а плотность тока — соответственно больше, чем для неподвижного сферического электрода того же радиуса. Таким образом, для определения тока на капельном ртутном электроде необходимо рассмотреть нестационарную диффузию к растущему капельному электроду. Можно, например, предположить, что электрод неподвижен, а раствор движется ему навстречу. Однако проще всего использовать решение для движущейся плоскости, скорость движения которой соответствует закону роста капли. При этом увеличение тока по сравнению с ожидаемым по уравнению (37.12) происходит в / 1,525 раза  [c.180]


    Тангенциальные движения поверхности ртути, вызывающие максимумы 1-го рода, обусловлены тем, что в разбавленных растворах потенциалы различных участков капли неодинаковы, так как плотность тока на разных участках капли различна. Последнее явление вызывается неодинаковой доступностью различных участков поверхности, например, шейки и нижней части капли. Из-за различия в потенциалах [c.201]

    Причиной появления максимумов является движение поверхности ртутной капли при ее вытекании, вызывающее перемешивание раствора и усиление подачи восстанавливающегося вещества к электроду. Это движение может быть обусловлено неравномерностью поверхностного натяжения на разных участках капли, а следовательно, неравномерностью ее поляризации (при этом возникают максимумы первого рода). Эти максимумы появляются в отсутствие поверхностноактивных веществ на фоне слабоконцентрированных электролитов и имеют форму пиков. Максимумы первого рода наблюдаются обычно в узкой области потенциалов. [c.213]

    Добавка желатина необходима для подавления полярографических максимумов тока, которые связаны с тангенциальными движениями поверхности ртутной капли. [c.108]

    Движение поверхности ртутной капли объясняется неравномерной плотностью тока на этой поверхности. [c.151]

    Если какой-либо ион восстанавливается при потенциале, соответствующем положительной части электро-капиллярной кривой (ртутная капля заряжена положительно), то движение поверхности ртутной капли и жидкости в приэлектродном слое направлено сверху вниз, так как в этом случае поверхностное натяжение тем больше, чем больше потенциал (см. рис. 44), а потенциал больше в нижней части капли. Если же восстановление иона происходит при более отрицательном потенциале, чем —0,56 в (ртутная капля заряжена отрицательно), то, хотя потенциал в нижней части капли по-прежнему больше потенциала в ее верхней части, движение ртути и электролита направлено снизу вверх, поскольку более высокому потенциалу соответствует меньшее поверхностное натяжение (см. рис. 44). [c.151]

    Причины движения поверхности ртутной капли различны, В одних случаях движение вызвано неодинаковой плотностью распределения отрицательных зарядов на поверхности капли. Обычно эта плотность максимальна в нижней части капли и снижается по направлению к верхней ее части. Неравномерная поляризация капли приводит к тому, что поверхностное натяжение становится неодинаковым в различных се частях, и вследствие этого возникает движение поверхности ртути от области с меньшим поверхностным натяжением к области с большим поверхностным натяжением, Движение такого рода вызывает возникновение так называемых максимумов первого рода. Они имеют вид острых пиков, чаще всего наблюдаются в отсутствие постороннего электролита (фона) или при небольшой его концентрации и находятся в очень сложной зависимости от ряда других факторов, в частности от приложенного напряжения. Так, при потенциале около —0,56 В по отношению к насыщенному каломельному электроду они обычно не возникают, так как поверхность ртути имеет нулевой заряд по отношению к раствору. При более положительных потенциалах ртуть заряжается положительно по отношению к раствору максимумы в этой области потенциалов называют положительными. При более отрицательных потенциалах (меньше —0,56 В) ртуть заряжена отрицательно и максимумы называют отрицательными. [c.495]

    В случае так называемых максимумов второго рода движение поверхности ртути связано с вытеканием струи ртути из капилляра. Вытекающая ртуть движется до нижней части капли и затем завихряется по направлению к ее верхней части. Поверхность ртути движется при этом снизу вверх. Максимумы второго рода имеют пологий вид и чаще всего наблюдаются в концентрированных растворах фона при снижении концентрации постороннего электролита они исчезают. Их также можно устранить с помощью поверхностно-активных веществ. [c.496]

    Другой способ—использование величины нормального диффузионного тока—применим и к необратимым процессам. Одндко в этом случае необходимо знать коэффициент диффузии кроме того, ток должен являться обязательно нормальным диффузионным током. Необходимо строго следить за тем, чтобы не было никаких дополнительных (кроме обусловленных ростом капли) движений поверхности ртути и не было процессов, приводящих к торможению самой электрохимической реакции. Если эти условия соблюдены, то число электронов определяется по уравнению Ильковича  [c.104]

    На поверхности неорганических твердых веществ часто встречаются свойственные этим веществам нарушения структуры. Они вызываются присутствием на указанной поверхности иснов, загрязняющих данное вещество. Получить чистую поверхность весьма трудно и считать реальную поверхность гладкой можно в очень редких случаях. Адам (641 показал влияние шероховатости поверхности на величину контактного угла и продемонстрировал, что при передвижении капли по поверхности она имеет по фронту движения значительно больший контактный угол, чем с тыльной части. Он приписал наличие гистерезиса контактного угла вязкостному сопротивлению движению кромки жидкости на твердой поверхности. Поэтому термодинамические соотношения адгезии практически могут быть приложимы только к жидкостям, у которых имеется точное соответствие между чистой работой, затраченной на образование новой поверхности, и приростом свободной энергии, согласно уравнению (74). [c.63]


    Хейдон (1958) вычислил величину работы неоднородной адсорбции. Наблюдения за каплей воды, взвешенно в толуоле с 4% ацетона показывают, что эта капля испытывает беспорядочные пульсации. Частота этой пульсации уменьшается с течением времени, и движение исчезает, когда ацетон распределяется между толуолом и водой в соответствии с коэффициентами распределения. Количество энергии, затраченной в процессе пульсации, может быть определено по амплитуде или иной характеристике пульсации. Поглощенная энергия может быть определена по изменению физикохимических свойств системы. Обе эти величины достаточно хорошо согласуются друг с другом, что свидетельствует в пользу справедливости исходных посылок, а именно движение капли по поверхности жидкости обусловлено неоднородным перемещением третьего [c.63]

    Согласно соотношению (38.8) положительные и отрицательные максимумы должны располагаться симметрично относительно п. н. з. ртути. Такой результат получен для движения поверхности капли в электрическом поле, созданном из1вне. [c.195]

    Эмпирически было установлено, что максимумы 1-го и 2-го рода могут быть устранены, если в раствор добавить органическое вещество, которое достаточно хорошо адсорбируется в широкой области потенциалов. Снижение полярографических максимумов в присутствии органических веществ объясняется изменением поверхностной концентрации адсорбированных молекул при движении ртутной поверхности. Например, при движении ртути от пижней части к шейке капли происходит растяжение поверхности нижней части капли, поверхностная концентрация адсорбированного вещества на этом участке понижается, а пограничное натяжение соответственно повышается. Наоборот, в верхней части капли происходит увеличение поверхностной концентрации органического вещества, снижающее пограничное натяжение. Поэтому возникает сила, действующая в направлении от шейки к нижней части капли и вызывающая ослабление, а в определенных условиях и полное прекращение тангенциальных движений поверхности. Кроме того, необходимо учитывать, что в области адсорбции органического вещества электрокапиллярная кривая становится, как правило, более плоской и различия в пограничном натяжении между разными участками капли уменьшаются. [c.204]

    Согласно соотношению (38.8) положительные и отрицательные максимумы должны располагаться симметрично относительно т. н. з. ртути. Такой результат получен для движения поверхности капли в электрическом поле, созданном извне. Реальное электрическое поле, возни-каюш ее при разряде частиц на ртутной капле, не является симметричным. Поэтому отрицательный максимум 1-го рода появляется лишь тогда, когда потенциал [c.207]

    В зависимости от причин, которые вызывают тангенциальные движения поверхности ртутной капли, полярографические максимумы делят на максимумы 1, 2, и 3-го рода. Причиной полярографических максимумов 1-го рода является неравномерность поляризации и не-равкомериость подачи восстанавливающегося вещества. В 1965 г. де Леви показал, что основная причина неравномерного распределения плотности тока при возникновении максимумов 1-го рода — неравномерность подачи восстанавливающегося вещества к ртутной капле вследствие эксцентричного характера ее роста. Такой характер роста капли является результатом двух процессов радиального расширения капли и дополнительного перемещения центра капли вниз (см. рис. 4.8, б). Как показал де Леви, в этих условиях плотность тока у дна капли больше плотности тока у ее шейки приблизительно в два раза, что связано с большей скоростью движения растягивающейся поверхности навстречу потоку диффузии именно в нижней части капли. Таким образом, эксцентричный характер роста капли вызывает неравномерное распределение плотности тока на капле, которое в обычных условиях усиливается за счет экранирования верхней части капли срезом капилляра. В разбавленных растворах неравномерное распределение тока вызывает заметное омическое падение потенциала между отдельными участками поверхности, т. е. неравномерную поляризацию. Так как разным потенциалам соответствуют различные значения пограничного натяжения, то вдоль поверхности капли возникает градиент пограничного натяжения, который и приводит к тангенциальным движениям поверхности ртути. Тангенциальные движения вызывают размешивание раствора, что, в согласии с законами конвективной диффузии, ведет к резкому возрастанию тока. [c.230]

    В этом разделе рассматривается влияние адсорбированного на подвижной границе электрод/раствор ПАОВ на конвекцию этой границы в условиях, когда возникновение тангенциальных движений не связано с адсорбцией ПАОВ. Причиной таких тангенциальных движений поверхности жидкого электрода может быть неравномерность поляризации и неравномерность подачи восстанавливающегося вещества (тангенциальные движения первого рода). Кроме того, тангенциальные движения поверхности ртути могут быть связаны с самим процессом вытекания ртути из капилляра при больших скоростях течения струя ртути сначала движется вертикально до дна капли, а затем, растекаясь в стороны, образует симметричные завихрения (тангенциальные движения второго рода). [c.143]

    Появление тангенциальных движений поверхности жидкого электрода вызывает возрастание подвода восстанавливающегося вещества к электроду. Вследствие этого наблюдается увеличение тока в некоторой области потенциалов выше его предельного значения, ограниченного скорбстью диффузии к радиально растущей капле в отсутствие тангенциальных движений ее поверхности. Это явление получило название полярографических, или вихревых, максимумов тока соответственно первого или второго рода в зависимости от вызывающих их тангенциальных движений. Полу-количественная теория максимумов первого рода и количественная теория максимумов второго рода созданы в работах школы А. И. Фрумкина. [c.143]

    Уменьшение транспорта вещества из объема раствора к поверхности электрода наблюдается и при торможении движений первого рода адсорбированным ПАОВ. Однако механизм их действия, по-видимому, сложнее. Помимо эффекта торможения, вызванного переносом ПАОВ вдоль поверхности, должен иметь место эффект снижения скорости движений из-за выравнивания вследствие адсорбции величин поверхностного натяжения в разных точках капельного электрода, имеющих разные значения потенциала, что вызвано различием в величинах токов. Эти различия в плотности тока на разных участках капли вызываются как неодинаковой радиальной скоростью движения разных участков поверхности капельного электрода, так и экранировкой верхней части капли срезом капилляра. Неоднородность в распределении тока вдоль поверхности электрода является причиной падения потенциала вдоль границы электрод/раствор и, следовательно, в отсутствие адсорбции ПАОВ вызывает появление значительных градиентов поверхностного натяжения и, как следствие, движений поверхности жидкого электрода первого рода. [c.146]

    Максимумы на полярографических кривых мешают полярографическому анализу, и от них необходимо избавляться. Максимумы как первого, так и второго рода могут быть уничтожены добавкой в раствор поверхностно-активиых веществ, тормозящих движение поверхности ртути. Поверхностно-активные вещества адсорбируются сильнее на тех участках капли, где больше поверхностное натяжение. Но поверхностное натяжение поверхностно-активного вещества меньше, чем у ртути, и поэтому на данном [c.152]

    Иногда вследствие увеличения предельного тока на поляро-граммах появляются максимумы и пики , сильно искажающие форму нормальной кривой. Явление возникновения максимумов состоит в том, что при отсутствии в растворе поверхностно активных веществ на полярограмме получается резкий скачок в силе тока (полярографический максимум) и только при даль-нейщем увеличении потенциала катода высота волны падает до нормальной величины. Следует отметить, что Гейровский дал неправильную теорию максимумов. Только после опубликования работы А. Н. Фрумкина (1934 г.), в которой была высказана новая теория максимумов и были проведены чрезвычайно изящные и наглядные опыты, подтверждающие эту теорию, этот раздел полярографии получил прочную теоретическую основу и с тех пор продолжает развиваться силами почти исключительно советских ученых. Было показано, что причиной увеличения предельного тока является движение ртутной капли, вызывающее размещивание раствора и поэтому уменьшающее толщины диффузного слоя. В результате возрастает диффузия разряжающихся ионов к капельному электроду. Как указывает Б. Н. Кабанов, движение поверхности ртути может вызываться двумя причинами во-первых, образованием капли при вытекании струи ртути из капилляра, во-вторых, неравномерной поляризацией капли, приводяш,ей к тому, что в разных точках капли получается различное поверхностное натяжение. Изменение поверхностного натяжения связано со взаимным отталкиванием ионов двойного слоя, растущим с увеличением заряда двойного слоя. Максимумы могут подавляться добавкой веществ, адсорбирующихся на поверхности электрода (желатина, агар-агара, метилового красного и др.). [c.293]

    Стрике и Кольтгоф в 1956 г. предложили вращающийся ртутный капающий электрод. Вращающийся вокруг своей оси и-образ-но изогнутый капилляр (рис. 126) увеличивает скорость движения поверхности вытекающей капли ртути за счет быстрого перемещения в растворе, что позволяет увеличить предельный ток примерно в 10 раз и, следовательно, повысить чувствительность метода. [c.195]

    Ранее ( 1.3, 1.4) указывалось, что процесс прохождения капель через систему струйного охлаждения можно условно разделить на несколько стадий конденсация, испарение в процессе движения, тепловое и динамическое взаимодействие капли с поверхностью нагрева, эвакуация капель из системы. Рассмотрим тепломассообмен для одиночной капли в процессе двух первых стадий, исключив возможную в реальных условиях промежуточную стадию, во В ремя которой испарение с поверхности капли начинается до того, как закончится тепловая релаксация ее в результате конденсации (см. рис. 1.7).  [c.125]

    Неравномерное распределение заряда по поверхности ртутной капли приводит к возникновению участков с разным поверхностным натяжением. В результате сжатия одних и растяжения других участков поверхность капли движется и перемешивает раствор в приэлектродном слое. Если в анализируемый раствор ввести поверхностно-активное, то есть адсорбирующееся на ртути, вещество, то оно адсорбируется на участках с более высоким поверхностным натяжением и снижает его. При достаточно высокой концентрации новерхностно-активного вещества поверхностное натяжение будет выравнено, движение поверхности ртутной капли прекратится, и максимум будет подавлен. Для подавления максимумов пригодны разнообразные природные (желатина, агар-агар) и синтетические (тритон X-100) поверхностно-активные вещества с большой молекулярной [c.169]

    Использованные в теории Фрумкина упрощающие предположения о слабом изменении адсорбции, возможности аппроксимации ее угловой зависимости с помощью os 0, возможности описания влияния поверхностно-активных веществ на движение поверхности капли с помощью коэффициента торможения подтверждаются в следующих предельных случаях при малом значении числа Пекле Ре aUiD а — радиус пузырька, и — его скорость D — коэффициент диффузии поверхностноактивного вещества) при Ре > 1, Re < 1 Re = aU/v (v — кинематическая вязкость жидкости), сильном торможении поверхности и умеренной поверхностной активности при Ре 1, Re С 1, если несмотря на относительно быстрое установление адсорбционного равновесия динамический адсорбционный слой формируется под влиянием кинетики адсорбции, что возможно лишь при очень низкой поверхностной активности. При Ре > >1, Re 1, слабом торможении и низкой поверхностной активности относительное изменение адсорбции невелико, но [c.128]


Смотреть страницы где упоминается термин Капля движение поверхности: [c.534]    [c.189]    [c.192]    [c.194]    [c.206]    [c.189]    [c.192]    [c.194]    [c.145]    [c.147]    [c.182]    [c.189]    [c.192]    [c.194]    [c.495]    [c.304]   
Полярографический анализ (1959) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте