Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть испытание

    В лабораторных условиях было изучено действие блоксополимеров на мухановскую, жигулевскую, туймазинскую (девонские), александровскую и радаевскую (угленосные) нефти. Испытания показали, что блоксополимеры с успехом могут быть применены для обезвоживания и обессоливания этих нефтей, лишь при обработке угленосных нефтей расход деэмульгатора возрастает до 80— [c.127]

    Следует отметить метод для оценки качества сгорания топлива, осуществляемый на однокамерной установке [13, с. 60—66], [19]. Установка представляет собой реальную камеру сгорания двигателя и снабжена аппаратурой для подачи, замера и зажигания- топлива и подогрева воздуха. На такой установке оценивают пусковые свойства топлива, полноту его сгорания, склонность к образованию нагаров и пределы устойчивого горения. Эти характеристики определяют, сравнивая их с аналогичными характеристиками эталона — топлива Т-1 из бакинских нефтей. Испытание проводят при следующем режиме расход воздуха 0,25 м /с, температура воздуха 60°С, давление воздуха 0,1 МПа, температура топлива 15—20 °С. Пусковые свойства топлива оценивают по коэффициенту избытка воздуха, при котором наступает воспламенение топливо-воздушной смеси пределы устойчивого горения определяют по коэффициенту избытка воздуха между моментами срыва пламени (смесь обеднена) и появления пламени на выходе из камеры (при обогащении смеси) полноту сгорания топлива определяют по коэффициенту выделения тепла, склонность к образованию нагара —по привесу жаровой трубы камеры сгорания до и после испытания. [c.64]


    Характеристики сырых нефтей, испытанных в качестве исходного сырья в процессе контактного пиролиза [c.124]

    Цель испытаний присадки ДН-1 на трубопроводе — проверка ее эффективности при перекачке мангышлакской нефти. Испытания присадки проводили на опытном трубопроводе диаметром 100 мм и протяженностью 615 м. [c.141]

    На рис. 34 приведены результаты испытаний топлив ТС-1, полученных из нефтей разных месторождений. Как видно, топлива значительно отличаются по своим противоизносным свойствам как при испытании их в лабораторных условиях по показателю К (рис. 34, а), так и при испытании на стендах (рис. 34, б). Следует отметить очень хорошее совпадение результатов лабораторных испытаний со стендовыми. [c.63]

    Необходимость ужесточения стандартного метода определения коррозионности была вызвана тем, что условия испытания последнего оказались слишком легкими для выявления коррозионных свойств как базовых масел из сернистых нефтей, содержащих есте- [c.216]

    Сущность метода заключается в окислении масла в специальных колбах в приборе ДК-3 (подробная характеристика прибора ДК-3 дана при описании метода определения коррозионности) в течение 50 ч при 200° С. Температура испытания 200 С установлена, исходя из того, что она приблизительно соответствует рабочим температурам картерного масла. Продолжительность испытания 50 ч выбрана с учетом того, что она должна превышать индукционный период окисления масел из сернистых нефтей, обусловленный наличием в них сернистых соединений. Определение стабильности по этому методу характеризуется образованием нерастворимого осадка и степенью повышения вязкости окисленного масла. Содержание осадка определяют путем разбавления навески окисленного образца растворителем, фильтрования раствора, промывания осадка на фильтре тем же растворителем и определения остатка взвешиванием. [c.219]

    При обсуждении плана и объема этой монографии редакторам стало ясно, что она легко может достигнуть размеров энциклопедии, потому что опубликовано очень много фундаментальных исследований и технология, основанная на химии углеводородов, достигла высокой степени развития. Чтобы объем и стоимость монографии не превысили разумных пределов, было решено ограничить ес содержание изложением главным образом научных основ предмета. Это привело к необходимости опустить многие вопросы, относящиеся к технологии производства, конструированию оборудования, методам анализа и испытания, связанным с переработкой нефти, а также ряд вопросов, связанных с применением нефтепродуктов. [c.6]


    Когда редакторы обсуждали план и объем настоящих томов, они отдавали себе отчет в том-, что в этой области опубликовано так много отличных исследований и технология нефти, включая химию углеводородов, до такой степени развилась, что этот труд легко мог разрастись до размеров энциклопедии. В целях сохранения приемлемых объема и издательской стоимости труда было решено ограничиться изложением главным образом научных основ. Это заставило отказаться от рассмотрения многих инженерно-технологических и аппаратурно-конструкторских вопросов, а также методик анализа и испытания, применяемых при переработке нефти и применении многих нефтепродуктов. [c.7]

    Испытания на окисляемость при давлениях до 100 кгс/см показали, что масла из сернистых нефтей по сравнению с маслами из несернистых бакинских нефтей дают в 1,5 раза больше отложений и самовоспламеняются в интервале температур 200—220°С вместо 260°С [23]. [c.70]

    Условия испытания следующие масса катализатора — 5 0,005 г, размер гранул — 2,40 мм, температура крекинга — 482° С, объем пропускаемого сырья — 1,0 0,01 мл, объемная скорость — 2 или 16 ч- продолжительность испытаний — 5 мин, сырье — прямогонная фракция западно-техасской нефти с пределами кипения 260—427 °С и плотностью — 0,8600 г см  [c.162]

    Испытание на пятно разработано для выявления малостабильных битумов, полученных с использованием процессов крекинга Или высокотемпературной вакуумной перегонки. Для таких битумов характерны положительные результаты испытания. Однако аналогичные результаты наблюдаются в ряде случаев и для других битумов. Особенно часты такого рода примеры при переработке нефтей с малым содержанием смолисто-асфальтеновых веществ, используемых в последнее время при производстве битумов. Таким образом, обработка битума растворителем с заданной растворяющей способностью не позволяет достаточно точно установить характер структуры битумов широкого ряда. [c.22]

    Второй путь расширения ресурсов дизельных топлив-повышение температуры конца кипения (утяжеленные топлива). Лабораторные эксперименты и первые испытания свидетельствуют о возможности увеличения ресурсов дизельного топлива на 3-4% за счет повышения температуры конца кипения, т.е. в результате более глубокого отбора из нефти прямогонных фракций с температурой выкипания на 25-30 °С выше температуры выкипания стандартного дизельного топлива [21, с. 15-17]. [c.84]

    В связи с истощением в ряде стран нефтяных ресурсов и повышением цен на нефть наблюдается возрастающая заинтересованность в изыскании новых источников получения моторных топлив, и в первую очередь бензинов. К числу возможных топлив для двигателей или компонентов автобензинов относят спирты. Большие исследования и испытания на автомобилях проведены с метиловым и этиловым спиртами как в чистом виде, так и в качестве высокооктановых компонентов. Особое внимание уделяют метанолу в связи с тем, что он имеет очень широкие сырьевые ресурсы. [c.88]

    На основании исследовательских данных по двухступенчатому каталитическому крекингу тяжелого сырья, полученных на лабораторных модельных и пилотных установках с циркулирующим пылевидным катализатором, проведены испытания на опытно-промышленной установку с кипящим слоем по каталитическому крекингу мазута (рис. 1). Сырьем слу кил мазут из смеси тяжелой балаханской и бинагадинской нефтей следующей характеристики  [c.244]

    Авторами совместно с М. 3. Абдрахимовым наблюдались ярко выраженные температурные различия в действии воды на прочность образцов кислых (гранит) и основных (амфиболит) пород. При испытаниях на сжатие с большой скоростью деформирования (на прессе с не очень высокой жесткостью) эффекты при комнатной температуре отсутствовали. Опыты в автоклаве при 250°С показали, что вода вызывает 3—4-кратное снижение прочности пород. Подобным же образом действует сырая нефть, активным компонентом которой является, по всей вероятности, вода. [c.98]

    На Новокуйбышевском НПЗ были испытаны оксиэтилированные алкилфенолы (ОП-7, КАУФЭ-14, УФЭ-8) на мухановской нефти. Испытания показали, что с переходом на неионогенные деэмульгаторы качество обессоленной нефти улучшается при небольшом их расходе. [c.150]

    Наиболее эффективные ингибиторы были испытаны в различных пробах конденсационных вод, отобранных с АВТ, перерабаты -вающих смеси туймазинской и ромашкинской нефтей. Испытание проведено по первому методу (табл. 6). [c.202]

    Меркаптаны используют в качестве сырья для получения гербицидов [94, 95]. Для широких испытаний были синтезированы гербициды на основе меркаптанов, полученных из узких фракций концентратов, выделенных из башкирских нефтей. Испытания проводились на следующих культурах моркови, овсе, горохе, свекле и горчице. Отмечается возрастание активности препарата с увеличением длины алкильной нормальной цепи. Испытания показали, что на базе нефтяных меркаптанов могут быть получены активные гербицидные препараты. [c.105]


    Продукты конденсации окиси этилена с тяжелыми угольными, сланцевыми прибалтийскими и кашпирскимы фенолами, а также с широкой фракцией угольных фенолов были испытаны АзНИИ ДН в лабораторных условиях как замедлители сероводородной коррозии при компрессорной добыче нефти. Испытания проводили в условиях, вызывающих коррозию подъемных труб в компрессорных скважинах с сероводородной пластовой водой. Полученные положительные результаты (табл. 4) послужили основанием для синтеза опытной партии продукта конденсации утяжеленных керосиновых угольных фенолов с окисью этилена (продукт УФЭ,). [c.157]

    Схема с применением защелачивания и водной промывки несложна как в аппаратурном оформлении, так и в эксплуатации. К не-достаткал этой схемы относятся высокий расход каустической соды (15 кг/т) [23] и наличие сернисто-щелочных стоков. При переработке фракций из высокосернистых нефтей из-за значительного содержания сероводорода в отгоне (бензине) даже высокий расход каустической соды не обеспечивает полного удаления сероводорода Такой отгон, не выдерживающий испытания на медную пластину, выводится с установки в сырую нефть. [c.74]

    Методические стандарты определения качества масел. Перед тем, как присвоить маслу класс качества API или ССМС/АСЕА, оно должно быть проверено стандартными методами при помоши лабораторных и моторных испытаний. Основными методическими стандартами за рубежом являются американские ASTM, международные ISO, Европейского координационного совета СЕС, национальные стандарты Германии DIN, стандарты Института нефти Великобритании 1Р и др, [c.131]

    Указанные в таблице комплексы методов квалификационных испытаний разрабатывают, постоянно совершенствуют и руководствуются ими в работе специально созданные при Госстандарте комиссии научной экспертизы (КНЭ), в состав которых входят высококвалифицированные специалисты данного профиля (в основном химмотологи) — представители научно-исследовательских институтов, конструкторских бюро, заводов-изгото-вителей, министерств и ведомств. Разработанные этими комиссиями комплексы методов позволяют в короткий срок (1 — 3 мес) испытать и по результатам испытаний принять решение о допуске к применению или к дальнейшим испытаниям опытных образцов ГСМ, полученных по измененной технологии, из нефтей новых месторождений, а также в случае небольших изменений состава компонентов или присадок в них. [c.16]

    Моторное масло должно обладать смазывающей способностью, т. е. требуемой вязкостью, хорошей прокачиваемостью при любой температуре, до -которой может нагреться двигатель, и, кроме того, оно должно иметь определенную маслянистость . Испытание маслянистости и способности масла работать при высоких давлениях проводится с помощью специальных устройств, измеряющих трение, таких, нанример, как прибор Дили и Хер-шеля (Deeley and Hershel [6]). Практика эксплуатации показывает, что обычные минеральные масла имеют удовлетворительные показатели маслянистости , хотя следует заметить, что зубчатые передачи автодвигателей требуют использования смазочных масел, содержащих противоизносные присадки. Минеральные масла среднего молекулярного веса, полученные из нефтей, не содержащих парафина, или депарафинизированные настолько, что их температура застывания удовлетворяет требованиям, предъявляемым климатическими условиями (—20° С в умеренном климате, —35° С на севере), будут сохранять удовлетворительную вязкость и подвижность при температуре эксплуатации. Способность моторного масла охлаждать двигатель — очень важный фактор, большая часть производимой при сгорании топлива тепловой энергии удаляется с помощью масла. Но улучшить эту характеристику трудно теплоемкость и теплопроводность масел можно варьировать в небольших пределах. [c.491]

    Соответствие качества моторных масел требованиям, предъявляемым к маслам различных групп по классификации Американского института нефти (API), введенной в действие с 1971 г., устанав-лнвают путем испытаний масел в двигателях (табл. 51). [c.131]

    Во ВНИИ НП был разработан способ сравнительной оценки активности катализаторов при малых степенях обессернванияИспытание катализаторов проводят с целью определения объемной скорости или фиктивного времени контакта сырья, при которых достигается степень гидрообессеривания, равная 70%. Полученные результаты сравнивают со значениями тех же факторов для эталонного катализатора. Испытания катализаторов проводят на лабораторной установке высокого давления, аналогичной установке показанной на рис. 60. В качестве сырья используют фракцию 200—300° С прямой перегонки ромашкинской нефти с содержанием серы 1,10%. Можно использовать и другие прямогонные дистилляты, выкипающие в указанных пределах и содержащие 1,0—1,5% серы. В качестве эталона используют промышленный алюмокобальтмолибденовый катализатор, приготовленный в 1956 г. на Ново-Куйбышевском НПЗ со следующими свойствами  [c.178]

    Интересную связь между некоторыми свойствами битумов показал В. Хьюкелом [28]. бн предложил диаграмму для определения зависимости консистенции битумов от температуры, причем при температурах ниже температуры размягчения консистенция выражается в единицах пенетрации, а при более высоких температурах — в единицах вязкости (рис. 14). Шкала консистенции построена таким образом, чтобы результаты испытаний для большой группы битумов могли быть представлены прямыми линиями. Эта группа включает остаточные битумы разных нефтей, содержащие небольшое количество твердых [c.30]

    Изменение компонентного состава сырья в процессе деасфальтизации иногда используют для получения битума как целевого продукта. Так, при переработке нефтей парафиновой или смешанной основы в остаточных битумах содержится много парафина, и по этой причине они имеют низкую дуктильность. Поскольку во внутренних районах США истинно асфальтовые нефти редки, то во избежание транспортирования нефти с побережья на нефтеперерабатывающих заводах, расположенных в этих районах, битумы получают деасфальтизацией остатка перегонки [115]. Процесс ведут таким образом, что основная часть парафина остается в пропановом растворе [И1]. В результате дуктильность асфальта превышает 100 см при пенетрации примерно 80-0,1 мм и температуре размягчения 46—49°С. Испытание на пятно Олиензиса показывает отрицательный результат. Выход асфальта плотностью 1008—1017 кг/м составляет 52— 53% (об.) прп переработке гудрона плотностью 963 кг/м [115]. [c.84]

    Таким образом, при равном выходе на нефть и одинаковых выходах кокса сырье коксования, полученное по схеме переокисление—разбавление—перегонка , содержит больше ароматических углеводородов, чем сырье, полученное по другим рассмотренным выше схемам. Это благоприятно сказывается на термической стабильности сырья, которую оценивали на трубчатой нагревательной печи опытной установки. Через трубчатую печь в течение нескольких часов прокачивали испытуемый продукт и регистрировали давление на линии нагнетания насоса. Повышение давления свидетельствует о начавшемся закоксо-вывании печи, т. е. разложении продукта [177]. Испытанию подвергали сырье коксования, полученное по разным схемам из котур-тепинской нефти нагрев проводили до 490 °С. При нагревании мазута, окисленного до температуры размягчения около 70 °С и обеспечивающего выход кокса при коксовании 207о, давление на линии нагнетания печного насоса поднялось в течение 4 ч с 0,4 до 1,0 МПа. При нагревании остатка перегонки смеси окисленного и неокисленного мазутов, обеспечивающего даже несколько больший выход кокса (25—26%), давление за такой же период времени не изменилось. Окисленный гудрон при нагревании ведет себя подобно окисленному мазуту. Для сравнения нагревали также гудрон изменения давления на линии нагнетания насоса не наблюдалось. [c.120]

    Н. Б. Вассоевичем в двух статьях, опубликованных в журналах Геология нефти и газа (1971, Л 9 — Концепция, выдержавшая испытание временем (о взглядах И. М. Губкина иа происхождение нефти) ) и Известия АН СССР , (серия геол., 1971,. Л 12 — Представления И. М. Губкина о стадийности нефтеобразованпя ). [c.380]

    Теплота сгорания автомобильных бензинов различных марок и разного компонентного состава, вырабатываемьк из нефти, практически одинакова (различается на 1-2%, что находится в пределах точности измерения расхода топлива при стендовых испьгганиях двигателей) [32]. Поэтому теплота сгорания в настоящее время также не определяется при квалификационных испытаниях автомобильных бензинов. В перспективе при использовании кислородсодержащих компонентов или продуктов переработки угля и сланцев, значительно отличающихся по теплоте сгорания от современных товарных бензинов, может возникнуть необходимость включения [c.31]

    В качестве сырья %пя крекирования брался газойль сураханской отборной нефти с удельным весом 0,8605, выкипаемостью до 300 "С 14 %, до 360 "С — 70 % при начале кипения 220 С и общим содержанием ароматических углеводородов 12 % (анилиновая точка деароматизированного газой.1гя 96,0). Б онисанпой выше аппаратуре этот газойль пропускался в течение 40 мик через испытуемые >б])азцы глин нри температуре 460—480 "С со скоростью 0,6 ч (табл. 4). Р( зультаты испытания пеактивиронанпых глин показали, что они обладают значительно меньшей каталитической активностью, чем активированная гл1зни Л" 2. При сопоставлении констант, характеризующих [c.83]

    Испытание производится в пробирке диаметром около 15 мм. В нее наливают испытуемый продукт до высоты в 90. it.it и на пробке вставляют термомечйр располагая его кощентрично и притом так, чтобы щарик его приходился немного ниже верхнего слоя нефти. Затем пробирку опускают в холодильную смесь (см. главу Смазочные масла ) в вертикальном положении. Когда термометр покажет, что нефть приняла уже температуру смеси, пробирку еще оставляют на % часа. Самое испытание производится наклонением пробирки [c.38]

    Испытание в этой форме довольно условно. Переход от подвижного состояния в неподвижное, даже при одной и той же температуре, может совершаться с различной легкостью и зависит от ряда причин, напр., характера парафина, смол и т. п. Кроме того плохая теплопроводность нефти не дает уверенности в том, что нефть вся имеет одну и ту же температуру ло всей массе, особенно лри вынимании пробирки из смеси. Поэтому иногда выгоднее, хотя бы ценой большей продолжительности исследования, окружать пробирку жуфтой, дурно проводящей тепло. Для этого пробирку с нефтью на пробке опускают Б др тую, более широкую, наполненную почти доверху незастывающей жидкостью (спирт, керосин и т. д.) или даже вовсе ничем не наполненную (воздушная рубапжа). [c.39]

    При техническом испытании нефти путем перегонки из большого лабораторного куба собирают, наягр., фракции газолшса до [c.49]

    Всякая критика общепринятого способа Гольде может быть интересна и важна постольку, поскольку побуждает к новым исследованиям (В эгоад направлении. Но не надо забывать, что Гольде не претендует на цифры, выражающие абсолютное количество асфальта Б процентах. Получаемые по его методу цифры относительны и вполне достаточно и их для того, чтобы определять достоинство нефти или нефтяного продукта, раз способ, дающий такие относительные цифры, общепринят. Но тогда уже надо раз навсегда строго придерживаться одного и того же метода. Это не соблюдается, напр., Б Америке, где вообще испытание нефтей на содержание асфальта не отличается строгостью осаждение производится десятикратным количеством бензина и осадок замеряется по объему, а не по весу. Ивенс (62) нашел давно, что если бензин действительно хорошо очищен дымящей серной кислотой, то результаты осаждения не зависят от количества осадителя 5—40 объемосв дают тождественные цифры содержания асфальта. Этот неожиданный результат, повиди-мому,, нуждается еще в проверке. [c.85]


Смотреть страницы где упоминается термин Нефть испытание: [c.4]    [c.42]    [c.336]    [c.129]    [c.131]    [c.137]    [c.140]    [c.387]    [c.120]    [c.155]    [c.7]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте