Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЕЖФАЗНОЕ МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ II АДГЕЗИОННАЯ ПРОЧНОСТЬ

    Многие эффекты улучшения физико-механических свойств объяснены в аспекте теории химического взаимодействия [236,237]. При химической модификации поверхности силанами аппретирующий силановый слой состоит из прочно хемосорбированного силана, слабо хемосорби-рованного силана и физически сорбированного силана [237 - 239]. Структурный градиент силанового слоя оказывается чувствительным как к условиям обработки, так и к природе поверхности наполнителя. Физическая сорбция зависит от его структуры и с увеличением количества физически сорбированного силана прочностные характеристики стеклонаполненной композиции ухудшаются. Однако экспериментально доказано, что химическое связывание не является основной причиной улучшения адгезии. Например, монослои силанов не имеют оптимальную механическую прочность. Загрязнение поверхности, захваченные пузырьки воздуха, неравномерное покрытие поверхности аппретами и другие факторы влияют на адгезионную прочность, хотя и не являются определяющими. Поэтому предлагаются и другие подходы, дающие возможность объяснить эти эффекты [240 - 243]. Полагают, что на межфазной границе происходит взаимопроникновение и смешение молекул аппретирующего вещества и полимера на молекулярном уровне. Этот эффект эквивалентен образованию взаимопроникающей полимерной сетки. Возможно два типа взаимного смешения, которое включает проникновение молекул матрицы в хемосорбированный слой силана и миграцию физически сорбированного силана в матрицу. При этом в фазе силана сополимеризация не протекает. Такая схема подтверждена анализом ИК-спектров исследуемой системы [242]. [c.83]


    МЕЖФАЗНОЕ МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ И АДГЕЗИОННАЯ ПРОЧНОСТЬ [c.11]

    Покрытия имеют максимальную адгезию при наличии в сшивающем мостике шести метиленовых групп. Можно полагать, что при п=2 близкое расположение узлов пространственной сетки ограничивает молекулярную подвижность цепей. Известно, что увеличение гибкости цепей способствует достижению большего молекулярного контакта, а повышение полярности — усилению взаимодействия на межфазной границе [67, с. 200]. Однако для каждой полимерной системы существует оптимальная степень полярности, выше которой возрастающее диполь-диполь-ное взаимодействие между цепями уменьшает их адгезионную способность. С ростом величины п гибкость молекул диаминов, и пространственных полимеров на их основе возрастает, полярность же проходит через максимум [69, с. 136, 194, 244]. Снижение полярности при п = 9, очевидно, является причиной уменьшения адгезионной прочности. [c.193]

    Адгезионная прочность является одной из важнейших практических характеристик адгезионного соединения. Несмотря на многообразие механизмов адгезионного взаимодействия, можно выделить основной фактор, влияющий на адгезионную прочность — характер меж-фазных молекулярных сил. В середине 60-х годов автором совместно с А. А. Берлиным была предпринята попытка обобщить имеющийся в те годы экспериментальный материал, критически осмыслить возникшие противоречия и сформулировать по возможности непротиворечивый подход к проблеме адгезии полимеров. Результатом этой работы явилась монография, изданная в 1969 г. В этой монографии, в ее переработанном втором издании (1974 г.), а также в работах других исследователей была достаточно убедительно продемонстрирована решающая роль межфазных молекулярных сил в адгезии. [c.4]

    Адгезионное взаимодействие обеспечивает способность жестких сетчатых полимеров к большим обратимым деформациям в адгезионном соединении, в несколько раз превосходящим их разрывные деформации в свободном соединении. Кроме того, адгезионное взаимодействие с полимером оказывает влияние на состояние поверхности подложки и на ее деформационно-прочностные свойства. Наконец, межфазные молекулярные силы определяют кинетику релаксационных процессов, что в конечном итоге определяет долговечность адгезионных соединений. Разумеется, проблемы прочности адгезионных соединений не исчерпываются вопросом о межфазных молекулярных силах. Однако их влияние разнообраз- [c.4]


    Косвенных данных, свидетельствующих о решающем влиянии межфазного взаимодействия на адгезионную прочность, накопилось очень много. Часть этих данных была обобщена в [22, 25], Здесь мы коснемся наиболее убедительных из них и главным образом некоторых новых результатов в этой области, а также уделим внимание вопросу более корректного выявления вклада межфазных молекулярных сил в адгезионную прочность. Учитывая, что адгезионная прочность является сложной характеристикой, отражающей не только характер межфазного взаимодействия, но и деформационные свойства компонентов системы, для более корректной оценки прочности межфазных связей — собственно адгезии —- [c.31]

    Адгезионная способность а-цианакрилатов обусловлена их химической природой, что может быть рассмотрено в рамках термодинамического и молекулярно-кинетического подходов. Учет первого из них превалирует в случае, когда энергетика межфазного взаимодействия адгезива с субстратом определяется любыми силами, за исключением валентных и ионных (что, по меньшей мере на начальных стадиях процесса склеивания обусловливает когезионный характер разделения элементов системы), учет второго — при условии ориентирующего влияния субстрата на граничные и приповерхностные слои адгезива. Выбор между названными направлениями рассмотрения проблемы может быть сделан на основании результатов ИК-спектроскопических исследований закономерностей адгезии а-цианакрилатов к металлам. Этим методом на примере этил-а-цианакрилата установлено [309] уменьшение частоты валентных колебаний карбонильной группы (1751 см ) и увеличение частоты асимметричных колебаний эфирного фрагмента (1252 см- ), что свидетельствует [310] об образовании водородных связей между кето-группами адгезива и гидроксильными группами окисленного металлического субстрата. Рассмотрение поляризованных ИК-спектров сформированных на обработанном 5%-ой серной кислотой алюминии пленок этил-а-цианакрилата толщиной, не превышающей 1 мкм, свидетельствует об ориентации групп 0=С параллельно поверхности субстрата. Регулирование химической природы этой поверхности путем замены окислителя приводит к изменению молекулярной ориентации, что, в свою очередь, обусловливает изменение прочности адгезионных соединений. Следовательно, закономерности адгезии а-цианакрилатов определяются факторами как термодинамической, так и молекулярно-кинетической природы. [c.82]

    Образование адгезионного соединения начинается с приведения в контакт его элементов - адгезива и субстрата. При этом происходит смачивание субстрата растекающимся адгезивом, что приводит к установлению молекулярного контакта между соприкасающимися поверхностями и в конечном итоге-к образованию соединения, обладающего в зависимости от характера и интенсивности межфазного взаимодействия той или иной прочностью. [c.4]

    Исключение роли технологических факторов может быть достигнуто также выражением прочности адгезионных соединений в единицах липкости. Поскольку липкость характеризует мгновенную адгезионную способность, такая оценка не осложнена кинетическим характером формирования систем. Сопоставление значений усилия отслаивания различных липких лент от некоторых полимерных и металлических субстратов с величинами поверхностных энергий адгезивов показало [350], что в области минимальной разности между поверхностными энергиями субстратов и слоев липкости (адгезивов) зависимость сопротивления отслаиванию от Аст описывается прямыми линиями (рис. 31). Этот эффект связывают с минимальной высотой энергетического барьера на границе раздела фаз адгезив-субстрат, обусловливающей максимальную прочность адгезионных соединений при исключении влияния факторов молекулярно-кинетической природы. Аналогичные закономерности экспериментально наблюдались рядом авторов, показавших существование экстремальной зависимости прочности крепления липких лент к различным субстратам от критического поверхностного натяжения последних. Положение максимума отвечает равенству энергетических характеристик элементов систем [351, 352] даже при переменных условиях их разрушения [353], хотя для обычных клеевых соединений, как правило, справедливо условие а, <. Поэтому естественно считать, что этот эффект имеет, по-видимому, общее значение, в чистом виде иллюстрируя роль термодинамики межфазного взаимодействия в процессах образования адгезионных соединений полимеров. [c.80]

    Учитывая превалирующее влияние факторов молекулярно-кинетической природы на закономерности межфазного взаимодействия бутадиеннитрильных эластомеров, содержание нитрильных групп в последних практически не должно сказываться на прочности адгезионных соединений, полученных при комнатной температуре. Этот вывод подтверждается данными [c.115]


    Согласно изложенным выше соображениям, полярность эластомеров не является непосредственной причиной изменения эффективности их межфазного взаимодействия с поликапроамидом. Поскольку нитрильные адгезивы различаются по степени дисперсности, можно ожидать, что именно этот фактор оказывает решающее влияние на интенсивность диффузии через границу раздела фаз. Действительно, содержание фракций с молекулярной массой, меньшей 25-10, составляет 91,5% для СКН-18 14,6% для СКН-26 и 9%-для СКН-40 [561]. Понятно, что в соответствии со вторым законом Фика диффузионный массообмен интенсифицируется при снижении молекулярной массы диффузанта. Поэтому из трех перечисленных нитрильных эластомеров максимальную прочность адгезионных соединений должен обеспечивать СКН-18. Однако влияние молекулярной массы проявляется прежде всего при повышенных температурах, способствующих усилению подвижности макромолекул. Как следствие, зависимость, приведенная на рис. 48,2, почти параллельна оси абсцисс. В этом убеждают также данные рис. 50, относящиеся к комнатной температуре. С ростом последней зависимость, как и следовало ожидать, приобретает монотонно возрастающий характер (рис. 51) вследствие повышения гибкости макромолекул. В меньшей степени этот эффект характерен для эластомера с максимальным содержанием нитрильных групп (рис. 50,3), что служит дополнительным доказательством справедливости рассматриваемых представлений. [c.116]

    В этой связи особый интерес представляет сопоставление прочности адгезионных соединений с молекулярными характеристиками межфазного взаимодействия (табл. 12) с одной стороны и свойствами переходных слоев (табл. В)-с другой. В качестве адгезивов были выбраны бутадиеннитрильные сополимеры, а субстратами, моделирующими оба основных их типа, служили поликапроамид и стекло. [c.157]

    Образование на поверхности свободных радикалов подтверждается результатами, полученными методами ЭПР-спектроскопии и МНПВО в ИК-области наличие свободных радикалов обнаруживается в системе вплоть до температур плавления полимеров, свидетельствуя об их высокой жизнеспособности благодаря защите слоем адгезива [787]. Косвенным доказательством свободно-радикального механизма межфазного взаимодействия, обусловливающего образование ковалентных связей через границу раздела фаз, служит высокая долговечность клеевых соединений в процессе их длительного хранения и воздействия активных сред [786, 787] (табл. 20). Если рост прочности адгезионных соединений пропорционален концентрации макрорадикалов, вероятность деструкции макромолекул может быть оценена экспоненциальной зависимостью типа уравнения (223). Как показано в разд. 3.1.2, структурные особенности полимеров, чувствительные к изменению их адгезионных свойств, учитываются в этом уравнении параметром X тогда прочность клеевых соединений, подготовленных механохимическим способом, должна быть связана с молекулярной массой и степенью кристалличности субстрата. Действительно повыщение послед- [c.194]

    Совершенно очевидно также,. что диффузия одного полимера в другой представляет собой явление растворения. Взаиморастворимость полимеров, к-рая в основном определяется соотношением их полярностей, очень важна для А., что вполне согласуется с известным правилом Дебройна. Однако заметная А. может наблюдаться и между несовместимыми, сильно различающимися по полярности полимерами, в результате т. наз. локальной диффузии, или локального растворения. Локальное растворение неполярного полимера в полярном можно объяснить неоднородностью микроструктуры полярного полимера, возникающей в результате того, что полимер, состоящий из цепей с полярными и неполярными участками достаточной протяженности, всегда претерпевает микрорасслаивание, подобное происходящему в смесях сильно различающихся по полярности полимеров. Такое локальное растворение вероятно в случае, когда диффундируют углеводородные цепи, т. к. в полярных полимерах объем неполярных участков обычно больше объема полярных групп. Этим и объясняется то, что неполярные эластомеры обычно проявляют заметную А. к полярным высокомолекулярным субстратам, в то время как полярные эластомеры к неполярным субстратам почти не прилипают. В случае неполярных полимеров локальная диффузия может обусловливаться наличием в одном или обоих полимерах надмолекулярных структур, исключающих диффузию в определенных участках межфазной поверхности. Значение рассмотренного процесса локального растворения, или локальной диффузии, для А. тем более вероятно, что, по расчетам, достаточно проникновения в субстрат молекул адгезива всего на несколько десятых нм (несколько А), чтобы адгезионная прочность возросла во много раз. В последнее время Догадкиным и Кулезневым развивается концепция, согласно к-рой на межфазной поверхности контакта двух мало- или почти полностью несовместимых полимеров может происходить диффузия концевых сегментов их молекул (сегментальная диффузия). Обоснованием этой точки зрения является то, что совместимость полимеров увеличивается с уменьшением их мол. массы. Кроме того, образование прочного адгезионного соединения может определяться не только взаимопереплетением молекулярных цепей в зоне контакта из-за объемной диффузии, но и диффузией молекул одного полимера по поверхности другого. Даже тогда, когда А. обусловливается чисто адсорбционными взаимодействиями, адгезионная прочность практически никогда не достигает своего предельного значения, поскольку активные груп- [c.11]

    Вследствие того что разрушение адгезионных соединений часто происходит не точно по межфазной поверхности, а сопровождается преимущественно разрушением одного из компонентов, возникло убеждение, что межфазные молекулярные силы не оказывают влияния на прочность и долговечность адгезионного соединения [4]. По мнению автора — это недопустимое упрощение, которое может привести к серьезным заблуждениям. Пренебрежение ролью адгезии и ее влиянием на прочностные свойства адгезионных соединений противоречит многолетнему практическому опыту активного воздействия на адгезионную прочность [1, 5—7]. Однако вопрос о том, в какой степени изменение интенсивности взаимодействия полимера с подложкой влияет на адгезионную прочность при постоянстве всех прочих факторов, влияющих на эту характеристику, до настоящего времени не решен из-за методических лoжнo teй. Дело в том, что трудно осуществить чистый эксперимент, при котором компоненты отличались бы только химической природой поверхности при постоянстве всех прочих параметров. Поскольку разрушение, адгезионного соединения всегда сопровождается затратой работы на деформацию компонентов, становится очевидным, что изменение деформационно-прочностных свойств компонентов в объеме или даже в тонком приповерхностном слое может повлечь за собой изменение вклада деформационной составляющей в общий баланс работы разрушения. Это обстоятельство и является основным препятствием установления однозначной связи между характером межфазных связей и адгезионной прочностью. [c.7]

    Одним нз важнейши.х факторов, влияющих на адгезионную прочность, являются остаточные напряжения, возникающие в адгезионных соединениях и концентрирующиеся на границе раздела фаз. Обусловленные усадочными явлениями в слое полимера, а также различием термических коэффициентов расширения компонентов, эти напряжения зависят от релаксационных процессов и определяются также характером межфазных связей. Последний момент, отражающий, по существу, влияние межфазных молекулярных сил на адгезионную прочность, изучен в настоящее время недостаточно. В одном из разделов монографии показано, что ограничение интенсивности адгезионного взаимодействия в зоне контакта двух полимеров позволяет реализовать амортизирующую роль межфазной поверхности в условиях действия высоких остаточных напряжений и тем самым повысить долговечность адгезионного соединения. [c.9]

    Вместе с тем неоправданное преувеличение формализма теории процессов смачивания способно привести к противоречиям в интерпретации экспериментальных данных. Так, казалось бы, вне зависимости от того, является ли тот или иной конкретный полимер адгезивом или субстратом, прочность адгезионных соединений должна быгь носюяиной. Однако результаты измерения сопротивления расслаиванию систем полистирол - поливиниловый спирт показывают, что в случае, когда первый полимер выступает в роли адгезива, по крайней мере в 7 раз выше, чем для системы, в которой он является субстратом [354]. Этот эффект обусловлен, очевидно, молекулярно-кинетическими факторами, в частности различной интенсивностью межфазных диффузионных процессов, определяемой тем, какой из элементов пары находится в твердом состоянии, а какой взаимодействует с субстратом, находясь в жидкой фазе. [c.81]

    В приближении Юнга а может рассматриваться как характеристика способности полимера к смачиванию им поверхности субстрата, а -как фактор, препятствующий этому процессу вследствие сохранения первоначальной формы растекающегося тела. Поэтому между величиной а и эффективностью межфазного взаимодействия должна наблюдаться антибат-ная зависимость при условии превалирующего влияния диффузионного механизма, т. е. при отсутствии заметного активационного барьера на границе раздела фаз при адгезионном контакте. В справедливости такого вывода убеждают результаты изменения сопротивления расслаиванию адгезионных соединений трех эластомеров группы СКН (фракция с минимальным значением молекулярной массы) с полиизобутиленом-35 Н/м для СКН-18 75 Н/м для СКН-26 и 70 Н/м для СКН-40 [16]. Иными словами, по мере снижения прочности адгезионных соединений эти эластомеры располагаются в ряд, точно отвечающий теоретическому. Аналогичный вывод следует из сопоставления значений а различных полимеров с литературными величинами Ррас для адгезионных соединений полиэтилена, полиизобутилена и полиэтилентерефталата. Для полиэтилена (адгезивы-полиизопрен, полибутадиен, полиизопрен, СКС-30 и СКН-40 [516]), полиизобутилена (адгезивы-натуральный каучук, СКС-30, СКН-18, СКН-26 и СКН-40 [568] и полиэтилентерефталата (адгезивы-полиэтилен, поливинилацетат, полиизопрен, СКС-30 и СКН-40 [569]) коэффициенты [c.125]

    Таким образом, анализ закономерностей изменения прочности адгезионных соединений, полученных в условиях действия различных факторов, подтверждает справедливость развитых представлений о молекулярно-кинетической природе соответствующих процессов. Представляется уместным завершить обсуждение сопоставлением введенных характеристик адгезионных процессов. Для строгости соответствуюпдие корреляции выполнены на тех же модельных системах нитрильный эластомер-стекло. Рассмотрим такие параметры, как коэффициент упаковки переходных слоев (рис. 80), энергии активации внутрифазного взаимодействия в последних и межфазного взаимодействия непосредственно с субстратом (рис. 81), а также относительное число межфазных связей (рис. 82). [c.160]


Смотреть страницы где упоминается термин МЕЖФАЗНОЕ МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ II АДГЕЗИОННАЯ ПРОЧНОСТЬ: [c.14]    [c.15]    [c.196]    [c.64]    [c.111]    [c.159]   
Смотреть главы в:

Адгезионная прочность -> МЕЖФАЗНОЕ МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ II АДГЕЗИОННАЯ ПРОЧНОСТЬ




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие адгезионное

Взаимодействия ион-молекулярные

Межфазные



© 2025 chem21.info Реклама на сайте