Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиримидины и пурины — компоненты нуклеиновых кислот

    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]


    Пурины, пиримидины, азотсодержащие компоненты нуклеиновых кислот 509 [c.509]

    ПИРИМИДИНЫ и ПУРИНЫ — КОМПОНЕНТЫ НУКЛЕИНОВЫХ кислот [45] [c.317]

    Величины К пуринов, пиримидинов и компонентов нуклеиновых кислот при хроматографировании на бумаге [c.471]

    Пурины, пиримидина, азотсодержащие компоненты нуклеиновых кислот 519 [c.519]

    Пиррол является компонентом гемоглобина и витамина В,2> пиримидин и пурин — компонентами нуклеиновых кислот и АТФ, тиофен — компонентом витамина Н. [c.19]

    Соединения ряда пиримидина широко распространены в природе и играют важную роль в процессах жизнедеятельности. Пиримидиновые основания являются обязательными структурными компонентами нуклеиновых кислот, многих коферментов, витаминов и антибиотиков, пиримидиновый цикл содержится в ряде важнейших природных конденсированных систем (пурины, птеридины, изоаллоксазины и др.). [c.331]

    Разрыв нуклеиновых кислот на более простые компоненты можно осуществить и ферментативно именно таким путем он и происходит при пищеварении. В секрециях поджелудочной железы и кишечника находятся а. нуклеазы, разрывающие нуклеиновые кислоты на составляющие их нуклеотиды б. нуклеотид азы, катализирующие отщепление фосфорной кислоты от нуклеотидов с образованием нуклеозидов в. нуклеозидазы, разрывающие нуклеозиды на пиримидин или пурин й сахар. [c.773]

    Аналоги пуринов и пиримидинов, их нуклеозиды и нуклеотиды широко используются в клинической медицине и научных исследованиях. Изменения в структуре гетероциклического кольца или углеводного компонента приводят к образованию соединений, токсический эффект которых обусловлен ингибированием определенных ферментов, участвующих в синтезе нуклеотидов или нуклеиновых кислот  [c.266]

    Одним из важнейших компонентов нуклеиновых кислот являются гетероциклические основания. Все они представ.1яют собой производные пиримидина или пурина. [c.298]

    Новым материалом для обессоливания компонентов нуклеиновых кислот является гель поли-Ы-винилпирролидона, с которого компоненты нуклеиновых кислот элюируются водой [28] в следующем порядке нуклеотиды, нуклеозиды, пиримидины, пурины [29]. Хроматографическая-подвижность нуклеозидов и оснований в геле поли-М-винилпирролидона, а также в биогеле падает вследствие образования водородных связей с матрицей [30]. Хлориды лития и натрия можно легко отделить от любых компонентов нуклеиновых кислот, но сульфат аммония элюи- [c.38]

    В- -)-Рибоза (см. стерическую конфигурацию на стр. 239) имеет огромное биологическое значение, так как наряду с дезокси-В-рибозой опа является основным компонентом нуклеиновых кислот, вследствие чего она содержится в любой живой клетке. В нуклеиновых кислотах D-рибоза содержится в виде фуранозы, глюкозидно связанной с некоторыми производными пиримидина и пурина и с фосфорной кислотой. Она получается гидролизом нуклеиновых кислот разбавленными кислотами. [c.241]


    Для непрерывного окисления ацетил-КоА в цикле лимонной кислоты (ЦЛК) необходимо постоянное присутствие оксалоащ тата. Это обычно обеспечивается циклической природой самого процесса однако из сказанного следует также, что если компоненты цикла — все или только некоторые из них — расходуются на синтетические процессы (биосинтез аминокислот, пуринов, пиримидинов, пентозных предшественников нуклеиновых кислот и коферментов, порфиринов и т. д.), то должны существовать какие-то способы для возмещения расхода. У животных эти анаплеротические цепи реакций обеспечиваются реакциями карбоксилирования, посредством которых происходят взаимопревращения пирувата и дикарбоновых кислот цикла. Еще один процесс, в котором используется предварительное карбоксилиро-вапие,— это превращение пировиноградной кислоты в пропионовую кислоту при брожении у пропионовокислых бактерий. Этот процесс служит как бы обходным путем для того, чтобы преодолеть препятствие в виде пируватки-пазной реакции на пути синтеза углеводов. В конечном итоге оксалоацетат легко декарбоксилируется ферментативным и неферментативным путем. В превращении Сд С1 = С4 участвуют главным образом следующие реакции  [c.298]

    Хроматографически изучены нурин, пиримидин п азотсодержащие компоненты нуклеиновых кислот. Можно илп изолировать нуклеиновые кислоты или расщеплять их. Изучено расщепление мононуклеотидов, нуклеозидов. Проведены исследования нуклеиновых кислот — рибонуклеиновых, дезоксирибонуклеиновых, нуклеотидов, мочевой кислоты и ее производных, производных барбитуровой кислоты. Проведено хроматографическое исследование аденозинполифосфорных кислот, серусодержащих производных пурина и пиримидина, дериватов ксантина и др. [c.203]

    Как И В случае пиримидинов, в таких соединениях, как транспортные РНК, обнаружены различные метилированные и другие производные пурина. Кроме того, пуриновые основания играют важную роль в обмене веществ, а многие пурины растительного происхождения — кофеин, теобромин — применяются в фармакологии. Субструктурными единицами нуклеиновых кислот являются нуклеозиды. Они состоят из азотистых оснований, связанных р-гли-козидной связью с пентозой. В зависимости от природы пентозного компонента нуклеиновые кислоты делятся на рибонуклеиновые (РНК) и дезоксирибонуклеиновую кислоту (ДНК). В РНК (внизу, слева) роль сахара выполняет рибоза, а в ДНК (внизу, справа) — дезоксирибоза  [c.300]

    МуклсиноЕые кислоты (полинуклеотиды) — полимеры, построенные из нуклеотидов. В состав нуклеотидов входят азотистые основания (производные пурина или пиримидина), углеводный компонент- пептоза рибоза или дезоксирибоза) и остатки фосфорной кислоты. В зависимости от пентозы, входящей л их состал, нуклеиновые кислоты делят на две большие группы рибонуклеиновые (РНК) и дезоксирибонуклеиновые кислоты (ДИК). Молекулы РИК содержат рибозу, в состав молекул ДИК входит дезоксирибоза. [c.51]

    С начала нашего века началось интенсивное изучение продуктов расщепления нуклеиновых кислот. Э. Фишер внес большой вклад в химию пуринов и пиримидинов. а позднее Ф. Левен, Д. Гулланд и др. определили строение углеводных компонентов и природу нукле-озидных звеньев (названия нуклеозид и нуклеотид были предложены Ф. Левеном еще в 1908—1909 гг.). Окончательно строение нуклеозидов, нуклеотидов и роль фосфодиэфирной связи были выяснены в 1952 г. в результате работ английской школы под руководством А. Тодда. [c.296]

    В результате полного гидролиза нуклеиновых кислот минеральными кислотами образуется смесь пиримидинов и пуринов (см. ниже), сахар (а именно пентоза) и фосфорная кислота. Таким образом, нуклеиновые кислоты построены как продукты поликонденсации более простых компонентов, называемых нуклеотидами. Последние получаются при мягком гидролизе нуклеиновых кислот разбавленным аммиаком. Следовательно, нуклеиновые кислоты являются полинуклеотидами. [c.773]

    Результаты многочисленных анализов показывают, что за редким исключением в состав нуклеиновых кислот входят все четыре основных компонента, характерных для данного типа полинуклеотида, а содержание редких компонентов может меняться в значительных пределах. Для большей части образцов ДНК довольно строго соблюдается правило Чаргаффа — эквивалентность содержания аденина и тимина, с одной стороны, и гуанина и цитозина (или цитозин + 5-метилцитознн) — с другой. Из этого правила чисто арифметически вытекают другие закономерности, известные под названием правил Чаргаффа эквивалентность содержания пуринов и пиримидинов и эквивалентность содержания оснований с кетогруппой (гуанин + тимин) и с аминогруппой (аденин-ь цитозин). Напротив, отношение суммы гуанина и [c.59]

    Наиболее важные, узловые аминокислоты названы на схеме полностью (глицин, глутамат, аспартат, треонин, метионин), остальные обозначены сокращенными названиями. Гликолиз (I) связан с циклом Кребса (П) через ацетил-КоА. Оба эти звена питают всю цепь синтеза аминокислот. Линии между I и V указывают пути синтеза нуклеиновых кислот. Эти кислоты получаются из пуринов и пиримидинов, в свою очередь связанных с аспартатом и глицином. Глицин и аминолевулиновая кислота — сырье для синтеза важнейшего компонента дыхательной цепи — гема, на основе которого получаются цитохомы и активные группы различных окислительно-восстановительных ферментов. [c.123]


    Дозе и Ризи [92] использовали электрофорез высокого напряжения на слоях агара для разделения компонентов смеси нуклеиновых кислот с последующей спектроскопической идентификацией их. Вайнер и Зак [93] разделили методом электрофореза пурины и пиримидины рубонуклеиновой кислоты на тонких слоях геля агара, нанесенных на тефлоново-стеклянную бумагу (Fiberfilm Т-20, А-60, Pallflex). Для денситометрических измерений применяли также тонкие слои агара на кварцевых [c.135]

    Исследование химического строения нуклеиновых кислот, начатое Ф. Мишером, далее было продолжено К. А. Косселем (1879 г.), который обнаружил в нуклеиновых кислотах азотсодержащие гетероциклические основания. Первым выделенным гетероциклическим основанием, присутствующим в нуклеиновых кислотах, был гуанин (ранее выделенный из перуанского гуано — помета птиц, ценного азотистого удобрения). Впоследствии из нуклеиновых кислот были выделены тимин (из клеток тимуса быка), цитозин (от греч. ytos — клетка) и аденин (от греч. aden — железа). В результате проведенных исследований русский химик Ф. Левен установил, что в состав нуклеиновых кислот входят азотсодержащие гетероциклические основания (производные пурина и пиримидина), фосфорная кислота и углеводный компонент — рибоза или дезоксирибоза. [c.264]

    Пурины и пиримидины доступны для микроорганизмов после гидролитического расщепления нуклеиновых кислот и их компонентов - нуклеотидов и нуклеозидов нуклеазами. В отличие от белков, нуклеиновые кислоты используются немногими бактериями. Бактерии, минерализующие нуклеотиды, высвобождают содержащиеся в них остатки фосфорной кислоты, обогащая почву фосфатами. Этот процесс особенно активно осуществляется бактериями Вас. megaterium var. phosphati um, на основе которых получают бактериальный препарат, применяемый для обогащения почвы фосфором. [c.429]

    ДНК по своей природе — биологический полимер, отличающийся высокой молекулярной массой и сложной линейной структурой. Макромолекула ДНК представляет собой длинную нераз-ветвленную цепь, остов которой состоит из чередующихся мономерных единиц—дезоксирибонуклеотидов. Нуклеотиды построены из трех компонентов пуринового или пиримидинового основания, пентозного сахара (дезоксирибоза) и фосфатных групп. Универсально распространенные азотистые основания, которых в молекуле ДНК обычно бывает четыре, следующие аденин и гуанин (производные пурина), цитозин и тимин (производные пиримидина). Для простоты их обозначают соответственно буквами А, Г, Ц и Т. Согласно модели Уотсона и Крика (1953) молекула ДНК состоит из двух полинуклеотидных цепей, образованных большим числом соединенных мелсду собой нуклеотидов. Связь между ними в цепи ДНК осуществляется в результате образования фосфатного мостика мелсду гидроксилами соседних дезоксирибозных остатков, к которым в качестве боковых радикалов присоединены азотистые основания. Сахара и фосфатные группы во всех нуклеиновых кислотах одинаковы, тогда как основания, соединенные водородными связями, меняются, причем аденин всегда присоединяется к тимину, а гуанин — к цитозину. Несмотря на то что в молекуле ДНК имеется только четыре азотистых основания, число их возможных комбинаций огромно. К примеру, участок нити ДНК фаговой частицы содержит 200 ООО нуклеотидов у высших растений это число, по-видимому, еще больше. [c.84]


Смотреть страницы где упоминается термин Пиримидины и пурины — компоненты нуклеиновых кислот: [c.14]    [c.218]    [c.221]    [c.76]    [c.9]    [c.526]    [c.577]   
Смотреть главы в:

Химия гетероциклических соединений -> Пиримидины и пурины — компоненты нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Пиримидин

Пурин

Пурины и пиримидины



© 2025 chem21.info Реклама на сайте