Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографические методы разделе

    Ионообменная хроматография используется как вспомогательный метод, предшествующий количественному определению веществ. При помощи хроматографического метода разделяют компоненты анализируемого раствора катионы от анионов, катионы от катионов, анионы от анионов. Ионообменная хроматография основана на обратимом стехио-метрическом обмене ионов, содержащихся в растворе, на подвижные ионы ионообменника. Одновременно с разделением элементов осуществляется их концентрирование, что имеет большое значение для повышения точности результатов анализа при определении примесей. Количественное определение веществ после их хроматографического разделения проводят химическими, физико-химическими или физическими методами. Различают три вида ионообменной хроматографии фронтальный анализ, вытеснительная хроматография и элюентная хроматография. Из них в количественном анализе применяют только вытеснительную и элюентную хроматографию. По этим методам разделяемую смесь вначале адсорбируют в верхней части колонки, а затем элюируют соответствующим растворителем (элюентная хроматография) или раствором (вытеснительная хроматография). [c.19]


    При помощи хроматографического метода разделяют растительные пигменты (хлорофилл, ксантофилл, ликопин, каротины и др.), аминокислоты, сахара, различные жирные кислоты, ферменты, вита- [c.20]

    Для определения группового состава жидкость предварительно разделяют на фракции НК —60°С, 60—95°С, 95— 122 °С, 122—150 °С, 150—200 С, 200 °С — КК. Затем каждую фракцию подвергают анализу. Вначале стандартными методами определяют содержание ароматических углеводородов. После удаления из фракций ароматических определяют содержание нафтеновых и метановых (парафиновых) углеводородов. Из-за низкой реакционной способности этих углеводородов их количественное определение основано главным образом на физических способах (перегонка, хроматография, кристаллизация, спектрометрия, растворение в различных растворителях и др.). В последнее время стали щироко использовать хроматографический метод исследования жидких углеводородов для определения их индивидуального состава. Выбор метода определяется целями исследования. На начальном этапе, когда требуется идентифицировать (установить тип) месторождение и возможные направления использования его продукции, очевидно, необходимо использовать весь арсенал аналитических средств с тем, чтобы установить полный детальный состав пластового флюида. [c.22]

    Хроматографический метод, широко применяемый в последнее время в самых различных областях химии и технологии, находит применение и при разделении нефтей и нефтепродуктов. Эти сложные смеси хроматографическим методом разделяются частью на индивидуальные компоненты (газы и низкокипящие), частью на смеси компонентов, близких по их адсорбционным свойствам насыщенные углеводороды, олефины, ароматические углеводороды, спутники углеводородов, содерн ащие серу, азот и кислород. Эти смеси в свою очередь могут быть подвергнуты дальнейшему разделению. В ряде случаев адсорбционным методом можно выделить индивидуальные углеводороды и их спутники и очистить их от примесей. [c.35]

    Среди желтых зон особенно отчетливо различаются зоны ксантофилла и каротина. Цвет высказал предположение, что каротин не является индивидуальным веществом, а состоит из нескольких компонентов с близкими свойствами. И действительно, в 1931—1933 гг. ряду исследователей удалось, пользуясь хроматографическим методом, разделить каротин на три изомерных соединения а-каротин с т. пл. 188°, -каротин с т. пл. 184° и f-каротин с т. пл. 178°. Природный каротин содержит около 15% а-каротина, 85% р-каротина и лишь следы (0,1%) f-каротина. Со времени этих исследований хроматографический метод стал систематически применяться для разделения и очистки других каротиноидов, встречающихся в растительных и животных организмах. [c.91]


    Бойд, Адамсон, Майерс. Сб. Хроматографический метод разделе- [c.23]

    Для хроматографии используются окись алюминия, окись магния, древесный уголь и другие адсорбенты. Хроматографическим методом разделяют также и бесцветные вещества. В этом случае зоны обнаруживают с помощью флюоресценции или химического анализа вымываемых веществ на выходе из колонки. [c.645]

    Выделение же и определение ароматических углеводородов осуществляются вполне удовлетворительно благодаря их специфической способности реагировать с крепкой серной кислотой или водородом. Развитие хроматографических методов позволило с достаточной точностью разделять не только парафиновые и циклопарафиновые углеводороды, но и нормальные парафиновые и изопарафиновые углеводороды, а также моноцикли-ческие и полициклические циклопарафиновые и ароматические углеводороды. [c.27]

    В тех случаях, когда коэффициенты распределения компонентов смеси между двумя фазами различаются мало, разделить их одноступенчатым способом не удается. Более эффективными являются динамические, хроматографические методы. [c.319]

    Существует несколько вариантов хроматографического метода. Однако все они основаны на различной подвижности растворенных веществ при прохождении их через двухфазную систему, одна из которых является подвижной, а вторая — неподвижной. Поэтому основной закон хроматографии можно сформулировать следующим образом любая жидкая или газообразная смесь веществ разделяется в процессе движения ее через слой сорбента, если существуют различия в сорбционном взаимодействии между компонентами смеси и сорбентом. [c.148]

    Для идентификации вещества измеряют температуры кипения и плавления, показатель преломления, исследуют форму кристаллов под микроскопом. Определение чистоты жидкостей и газов и идентификацию отдельных компонентов смесей проводят хроматографическим методом, который позволяет разделить смесь и идентифицировать ее составные части. [c.24]

    Хроматографический метод М. С. Цвета, как было показано, является универсальным методом разделения и анализа смесей веществ самой различной природы. В сущности универсальность обусловлена здесь огромным разнообразием природных и искусственных веществ, которые можно разделять и анализировать методом Цвета. В то же время известно, что каждый универсальный метод может видоизменяться в зависимости от конкретной задачи, вследствие чего возникает множество вариантов данного метода. И это множество непрерывно растет по мере развития метода. Вполне естественно возникла потребность в классификации. Тем не менее несмотря на десятки разновидностей и вариантов хроматографии главный принцип ее, сформулированный Цветом, — различие в поглотительной способности веществ на выбранном поглотителе при фильтрации обусловливает их разделение — сохраняется неизменным. Ниже приводится классификация наиболее употребительных вариантов хроматографии. [c.12]

    Определить степень разделения 012 по (XI.45). Зная упругость пара разделяемого вещества при данной температуре и коэффициенты активности, можно определить, какими другими методами, кроме хроматографического, можно разделить смесь гексан — ССЦ. По коэффициенту активности ССЦ и гексана охарактеризовать энергию межмолекулярного взаимодействия следующих систем  [c.271]

    Уже сам М. С. Цвет понимал, что метод хроматографии в принципе применим не только для разделения окрашенных веществ, но и для выделения и очистки всевозможных неокрашенных органических соединений. Однако широкое применение хроматографический метод разделения веществ получил лишь в тридцатые годы, после того, как Кун и его сотрудники таким путем разделили а- и р-каротины, а также лу-теин и зеаксантин яичного желтка. [c.59]

    Сущность хроматографического метода заключается в том, что через слой адсорбента, являющегося неподвижной фазой, пропускают поток элюента — жидкости или газа-носителя (подвижная фаза). Вместе с элюентом передвигается разделяемая смесь. Встречая на своем пути свободную поверхность адсорбента, компоненты смеси адсорбируются и, если их адсорбционная способность различна, смесь разделяется на зоны, каждая из которых преимущественно содержит чистое вещество. Очевидно, что раньше других будет отлагаться на адсорбенте компонент, наиболее сильно адсорбирующийся. Последними будут адсорбироваться вещества, имеющие слабое сродство к адсорбенту. Неадсорбирующиеся компоненты выйдут из слоя адсорбента вместе с элюентом. При продолжительном пропускании элюента зоны движутся по слою адсорбента вслед- [c.347]

    Величины V,, Уц и п изменяются в зависимости от использованной методики, в большинстве случаев определяется свойствами пробы, однако можно также состав фазы I приспосабливать к поставленной задаче. Таким образом, вероятность нахождения данной частицы вещества в фазе II определяется силами взаимодействия частицы вещества с фазой I. Их можно оценить при помощи той или иной функции разделения, и именно они положены в основу классификации методов разделения. Для разделений, применяемых в аналитической химии, соответственными функциями, например, являются произведение растворимости, закон распределения Нернста, изотермы обмена и адсорбции. В каждом отдельном случае силы взаимодействия различного рода, а следовательно, и функции разделения накладываются друг на друга. Поэтому конкретный метод разделения лишь отчасти может быть выражен какой-то одной функцией разделения. Следовательно, в практике разделения в большинстве случаев не может быть отброшен эмпирический подход. Это относится особенно к хроматографическим методам. Не существует в настоящее время математического выражения для функции разделе- [c.327]


    Строение азокрасителей всегда определяют путем их восстановительного расщепления до аминов (например, с помошью гидросульфита натрия или хлористого олова и соляной кислоты). Образующуюся при этом смесь мопоаминов, диаминов и оксиаминов тщательно разделяют на компоненты для выяснения строения последних в настоящее время с успехом применяют спектроскопические и хроматографические методы. [c.596]

    В настоящее время хроматографический анализ рассматривают как самостоятельный раздел аналитической химии. Отличительной особенностью хроматографических методов является их универсальность, т. е. возможность исполь- [c.6]

    Хроматографическим методом были обнаружены и разделены искусственно полученные трансурановые элементы эйнштейний (Рз), фермий (Рт) и менделевий (Мё). [c.365]

    Преимущество хроматографического метода перед другими физико-химическими методами анализа состоит в том, что в ряде случаев он применим тогда, когда другие методы разделения смеси оказываются непригодными. Метод дает возможность разделить малые количества веществ с очень близкими химическими свойствами. Хроматографический метод прост в выполнении и поэтому находит все большее применение для разделения самых разнообразных смесей неорганических и органических веществ. [c.477]

    При фронтально-хроматографическом методе пары углеводородов обогащают на полисорбе М 10/60 и затем разделяют на хроматографе с детекторами теплопроводности. [c.36]

    Термодинавическое описание адсорбционных систем. Реальная система с поверхностью раздела и система сравнения. Адсорбция как избыточная величина. Уравнения Гиббса для поверхности. Выражение химического потенциала адсорбированного вещества через адсорбцию константа Генри для адсорбционного равновесия, ее определение хроматографическим методом. Изотерма адсорбции, коэффициент активности адсорбированного вещества, поверхностное давление. [c.126]

    Связь между серой и ароматическими углеводородами настолько прочна, что хроматографическими методами разделить сернистые и высшие ароматические углеводороды невозможно. Сера в этих соединениях малоактивна и скорее всего входит в цикл, как в тиофене и т. п. соединениях. Сера в этих соединениях двувалентна, но если перевести ее в шестивалентную окислением перекисью водорода, образуются сульфоны. Сульфоны, полученные из сернистых соединений, отличаются высокой адсорбционной способностью, так что после окисления возможно более или менее полное хроматографическое разделение сернистых соединений и ароматических углеводородов. [c.177]

    В уране после облучения его в реакторе усгановлено присутствие изотопов самария 5т [153], европия Ей [156], гадолиния 0с1 [159] и тербия ТЬ [161]. Облученная проба смешивалась с некоторым количеством перечисленных редкоземельных элементов в качестве носителя, после чего два первых элемента и нептуний Мр [239] экстрагировались амальгамой натрия из растворов ацетатов в уксусной кислоте. Экстракт разделялся хроматографическим методом в ионообменниках (Оо уех 56—Х4), в качестве вымываюш,ей жидкости применялась 4,25%-ная молочная кислота с рН=3,42 при 80 С. По этому же методу разделялись гадолиний и тербий. Окись гадолиния чистотой 95% можно экстрагировать из смеси редкоземельных элементов, пользуясь в качестве растворителя трибутилфосфатом и водным раствором НМОз [464]. [c.445]

    Появились новые способы разделения смесей, основанные на применении ч овершенно новых принципов и обладающие беспрецедентно высокой эффективностью. Таковы, например, разнообразные хроматографические методы, с помощью которых можно разделять соединения, используя очень малые различия в их строении и свойствах (в адсорбируемости, растворимости, кислотности или основности, способности к образованию клатратов или комплексов, размерах и форме молекул). [c.4]

    После осаждения из осмола не растворимых в петролейном эфире веществ компоненты, растворимые в петролейном эфире, были разделены хроматографическим методом иа смоляные кислоты и углеводороды (фихтелит и ретен). Автор предлагает следующую схему химических превращений (декарбоксплирования и нерераспределения водорода), ведущую к образованию фихтелита и ретена из смоляных кислот  [c.473]

    Г. Гейзелер с сотрудниками [16] недавно провели интересное исследование полученных полимеризацией этилена масел 55 и Б. Масла были подвергнуты двукратному разделению адсорбционным (хроматографическим) методом на силикагеле. При первом, грубом разделении из масла была выделена так называемая асфальтовая фракция, а затем было разделено на фракции остаточное светлое масло. Полученные таким путем фракции исследовались по ряду показателей (молекулярный вес, температура застывания, вязкость, индекс вязкости), а также определялся их химический состав методом п-й-М. Некоторые из полученных авторами результатов для масла 55 приведены в табл. 152. [c.399]

    Разделение смеси веществ цроисходит в том случае, если размеры молекул этих веществ различны, а диаметр пор зерен геля постоянен и может пропускать лишь те молекулы, размеры -которых меньше диаметра отверстий пор геля. При фильтровании раствора анализируемой смеси более мелкие молекулы, проникая в поры геля, задерживаются в растворителе, содержащемся в этих порах, и движутся вдоль слоя геля медленнее, чем крупные молекулы, не способные проникнуть в поры. Таким образом, гель-хроматография позволяет разделять смесь веществ в зависимости от размеров и молекулярной массы частиц этих веществ. Этот метод разделения достаточно прост, быстр и, что самое главное, он позволяет разделять смеси веществ в более мягких условиях, чем другие хроматографические методы. [c.225]

    Хроматографические методы исследования основаны на различном распределении веществ между двумя фазами. Адсорбируемость веществ связана с их строением, и поэтому хроматографически можно разделить смеси веществ и доказать наличие в смеси определенных соединений. [c.229]

    Идея хроматографического метода в самом его общем виде принадлежит русскому ученому-ботанику Михаилу Семеновичу Цвету. Эта идея заключается в использовании для разделения веществ давно известного явления — способности большинства веществ в различной степени адсорбироваться на выбранном адсорбенте (и,чбирательная адсорбция). В 1903 г. М. С. Цвет опубликовал в трудах Варшавского общества естествоиспытателей статью, в которой сформулировал принцип нового метода и наглядно показал возможность отделения зеленой части хлорофилловых пигментов листьев (хлорофиллинов) от желтой (ксанто-филлинов) и от оранжевой (каротина) с помощью адсорбентов. В более поздних работах М. С. Цвет значительно усовершенствовал свой метод и дал ему необходимое теоретическое и экспериментальное обоснование. Однако не всем исследователям удавалось воспроизвести опыты М. С. Цвета при его жизни и вскоре этот метод был предан забвению. О его методе вспомнили через 27 лет после его открытия немецкие биохимики Кун, Ледерер и Винтерштейн, которые в 1930 г, успешно разделили каротин на отдельные изомеры, предсказанные Цветом. С этого времени хроматография стала развиваться в самых разнообразных направлениях и со временем приобрела характер самостоятельной научно-технической дисциплины, претерпев, таким образом, второе рождение. [c.7]

    Рассмотренное влияние на разрешфие хроматографической колонны разных факторов показывает, что газовая хроматография может успешно применяться для определения констант Генри как одного вещества, так и сразу нескольких компонентов смеси, если при достаточно высокой селективности а и емкости к обеспечивается необходимая эффективность колонны (большие М, малые Н). Этому способствует приближение условий работы колонны к равновесным (достаточно высокая температура колонны, однородность адсорбента и его упаковки, не слишком большие энергии адсорбции). Таким образом, для реализации селективности колонны, определяемой природой данного адсорбента, необходимо позаботиться о возможно большей ее эффективности. Определение констант Генри и изотерм адсорбции хроматографическим методом требует обеспечения равенства и постоянства температуры подводимого к колонне газа-носителя и температуры самой колонны, поддержания постоянства и измерения Т, I, w, р и Ро (см. раздел 7.8) с максимальной точностью, а также соблюдение необходимых предосторожностей при вводе малых доз адсорбатов. [c.140]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Температура колонки и детектора. Как уже указывалось, в хроматографическом методе анализа используется различие в адсор-бируемости газов на твердых телах и различие в растворимости их в жидкостях. Оба эти явления уменьшаются с повышением температуры. При повышенной температуре разность между сорбируемостью различных молекул сокращается настолько, что скорость движения их по слою сорбента становится практически одинаковой, и смесь не разделяется. [c.68]

    Получают их, сжижая воздух (—194° С, 1 атм). В несжижающей-ся части остаются неон и гелий. Отсюда их извлекают после связывания примеси азота газопоглотителями. Неон от гелия можно отделить вымораживанием или хроматографическим методом, в котором перемещение полосы адсорбированных газов по слою адсорбента вызывается движущимся температурным полем одновременно с движущимся потоком газов. Этот метод предложен Е. В. Вагиным [70] и разработан на основе теории теплодинамического метода А. А. Жуховицкого и Н. М. Туркельтауба [73]. Благодаря применению активированного угля, оказалось возможным разделить смесь неона и гелия при температуре жидкого азота. [c.316]

    Подавляющее большинство веигеств может быть разделено и проанализировано при помощи хроматографических методов. В аналит1 ческой химии органических соединений, которых в сотни тысяч раз больше неорганических, хроматография является ведущим методом. Для ее успешного применения необходимо знать, для каких веществ наиболее целесообразно использовать тот или иной вид хроматографии. Представленная схема позволяет в общих чертах наметить выбор вида хроматографии для анализа исследуемого образца  [c.630]

    В 1981 г. в Институте химии нефти СО АН СССР организована лаборатория азотистых соединений, в которой интенсивно начались исследования возможности выделения и разделения АС из сырых нефтей. Была разработана дифференцированная схема количественного выделения АО и НАС, которая позволила быстро нарабатывать значительные количества концентратов, разделять исследуемые компоненты на отдельные фракции, различающиеся по молекулярной массе и химическим свойствам. В схеме использованы экстракционно-хроматографические методы, а также методы, основанные на комплексообразовапии .  [c.77]


Смотреть страницы где упоминается термин Хроматографические методы разделе: [c.35]    [c.160]    [c.288]    [c.100]    [c.9]    [c.2]    [c.361]    [c.287]    [c.47]    [c.5]    [c.177]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы хроматографические



© 2024 chem21.info Реклама на сайте