Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм очистки воды коагулянтами

    Книга посвящена очистке природной воды и сточных жидкостей гидролизующимися коагулянтами. Дан систематизированный обзор исследований в этой области. Приведены необходимые сведения по теории коагуляции. Рассмотрены механизм коагуляции и электрокоагуляции минеральных и органических примесей воды, факторы, влияющие на эффективность процесса и качество очищенной воды, методы интенсификации коагуляции, возможность удаления растворенных примесей и микроэлементов, вопросы совмещения коагуляции с другими методами водоподготовки. Дано обоснование расчета оптимальной дозы коагулянта. [c.2]


    Очистка воды с применением гидролизующихся коагулянтов является следствием нескольких одновременно протекающих процессов хемосорбции, образования малорастворимых комплексов, их полимеризации и кристаллизации, флокуляции, взаимодействия образовавшихся полиядерных формаций с поверхностью дисперсной фазы. Комплекс процессов, протекающих при гидролизе коагулянта, приводит к полимеризации и кристаллизации продуктов гидролиза, образованию малорастворимых коагулянтов, которые обволакивают частицы взвеси и, объединяясь, образуют агрегаты, способные к осаждению. При этом влияние pH на хлопьеобразование сводится к влиянию концентрации ионов Н+ и ОН на состав и структуру продуктов гидролиза. Процесс коагуляции характеризуется не только флокуляционным механизмом, но и электростатическими явлениями, приводящими к снижению заряда минеральных частиц, что обусловлено влиянием катионов АР+ и Ре + и их комплексов. [c.22]

    Существовавшие ранее представления о коагуляционной очистке воды как процессе взаимной коагуляции коллоидных примесей с противоположно заряженными золями гидроксидов металлов либо как об электролитической коагуляции не соответствовали наблюдаемым явлениям. В связи с этим было развито представление о сорбционном механизме удаления коллоидных примесей из воды на развитой поверхности коагуляционных гелей гидроксидов металлов [141, с. 54]. Очевидно, что процессы сорбции примесей на хлопьях коагулянта происходят. Однако эта гипотеза также не объясняет ряда известных фактов невысокую сорбционную активность сформировавшихся хлопьев [141, с. 40] отсутствие коагуляции при введении в систему высокоактивных сорбентов — активных углей затруднения с очисткой воды, содержащей небольшое количество коллоидных примесей [137, с. 39] интенсификацию процесса коагуляционной очистки при добавлении в воду небольшого количества твердых частиц (глины, бентонита, магнезита и т. п.), а также при рециркуляции части уже сформировавшихся хлопьев гидроксида в зону коагуляции и т. д. [c.92]

    По современным представлениям [66], процесс реагентного обесцвечивания природной воды следует представить себе следующим образом. При добавлении солей-коагулянтов к очищаемой воде в течение первых 30 сек протекает гидролиз этих солей и образуются коллоидные гидроокиси алюминия или железа, обладающие огромной активной поверхностью. Окрашенные коллоидные примеси, содержащиеся в воде, адсорбируются на поверхности частиц гидроокисей. Коагуляция гидроокисей алюминия или железа и выпадение гидроокисей в осадок совместно с адсорбированными на их поверхности примесями происходит под действием растворенных в воде электролитов. Из приведенного описания механизма процесса обесцвечивания следует, что коагуляции подвергаются не коллоидные примеси воды, а гидроокиси, образующиеся при гидролизе коагулянтов. Сама же очистка г.оды происходит в результате адсорбции различных коллоидных и высокомолекулярных примесей на поверхности гидроокисей. Процесс коагуляции гидроокисей фактически приводит к удалению отработанного сорбента из очищенной воды. [c.92]


    Рассмотрим более подробно процесс коагуляционной очистки воды сульфатом алюминия — наиболее распространенным коагулянтом. При приготовлении рабочих растворов коагулянта в разбавленных водных растворах при рН<3 ион алюминия, как отмечалось в разделе 1.3, существует в виде аквакомплекса [А (Н20)б] октаэдрической структуры. Каждая из 6 молекул первой координационной сферы связана водородными связями с двумя молекулами воды второй сферы. Обмен молекул воды, координированных ионами алюминия, протекает по диссоциативному механизму. При повышении значений pH раствора более 3 (3,8—4,9) и концентрации ионов алюминия не более 10 г-ион/дм образуются мономерные аквагидроксокомплексы по схеме  [c.32]

    В практике водоочистки представляет интерес получение за возможно более короткие сроки легкоосаждающихся хлопьев с развитой поверхностью, обеспечивающих быстрое разделение гетерогенной системы. Одним из наиболее распространенных технологических приемов интенсификации процесса коагуляции при очистке воды является введение в осветляемую воду вспомогательных веществ (например, активной кремиекислоты) [1, 221. Однако получение осветленной воды высокого качества требует большого расхода реагента. В то же время можно достигнуть значительного повышения активности коагулянта, обрабатывая его водный раствор магнитным полем. В этом случае, как следует из механизма действия магнитного поля на водные растворы, в растворе коагулянта образуются ионные ассоциации солей вследствие уменьшения пх ги фатации и под воздействием других факторов, обусловленных наложением внешнего магнитного поля. Ионные ассоциаты в водном растворе могут служить центрами коагуляции. [c.49]

    Совершенствование технологии получения коагулянтов и флокулянтов позволит еще более расширить использование этих реагентов для очистки сточных вод. Большие резервы интенсификации метода коагуляции и флокуляции связаны как с более глубоким исследованием механизмов явлений, сопровождающих эти процессы, так и с более эффективным использованием различных физических воздействий. [c.7]

    Для выделения взвешенных загрязнений наиболее распространенным методом является отстаивание. При относительно небольших расходах воды для интенсификации процесса очистки используются напорные гидроциклоны и центрифуги [6]. Когда вода загрязнена плохо смачиваемыми загрязнениями, например маслами и нефтепродуктами, для их выделения применяется метод флотации. В случае высоких концентраций мелкодисперсных и коллоидных примесей, определяющих устойчивость суспензий сточных вод, применяются химические реагенты—коагулянты и флокулянты (сернокислые алюминий и железо, оксихлорид алюминия, полиакриламид и т. п.). Механизм действия реагентов по существу сводится к изменению поверхностных свойств взвешенных частиц загрязнений, созданию мостиков между ними, способствующих объединению частиц в агломераты — хлопья, имеющие значительно большую скорость выделения. Когда вода загрязнена взвешенными веществами, концентрация которых невелика (до 100 мг/л), и требуется надежное обеспечение высокой степени очистки, используется метод фильтрования. В большинстве случаев используются фильтры с загрузкой из зернистых материалов кварцевый песок, антрацит, керамзит, горелые породы и т. п. [c.13]

    Изучение механизма и кинетики очистки воды коагулянтами с утетом коллективных взаимодействий частиц и распада образующихся агрегатов. Результаты изучения позволят произвести обоснованный выбор режима перемешивания обрабатываемой воды, установить оптимальные промежутки времени между моментами ввода коагулянта и вспомогательных реагентов, уточнить конструктивные параметры смесителей и камер хлопьеобразования. [c.345]

    На Курьяновской станции аэрации сброженная в туштантен-ках смесь осадка первичных отстойников и активного ила промывается очищенной сточной жидкостью, коагулируется хлорным железом и известью и обезвоживается на барабанных вакуум-фильтрах, после чего подвергается термической сушке в сушильных барабанах. Для промывки сброженная смесь прохо дит замерные устройства, смесительную камеру и уплотнители. Расход промывной воды составляет около 3 м на 1 м осадка. Смешение осадка с промывной водой в течение 6—10 мин происходит в смесительной камере, к которой по перфорированным трубам подводится сжатый воздух из расчета 0,5 м на 1 м смеси. Смесь осадка с очищенной промывной сточной жидкостью поступает в радиальные отстойники-уплотнители, оборудованные скребковыми механизмами. В уплотнителях за время пребывания 9—12 ч осадок уплотняется до 95—96 %-ной влажности. Осветленная жидкость (сливная вода) направляется на очистку совместно с поступающими на станцию сточными водами. Промытый уплотненный осадок перекачивается плунжерными насосами в отделение коагулирования. Расход коагулянтов в среднем составляет 4—5 % РеСЦ и 12—15 % извести (в пересчете на СаО). Скоагулированный осадок обезвоживается на четырех барабанных вакуум-фильтрах, имеющих площадь поверхности фильтрации 40 м каждый. Вакуум-фильтры работают под вакуумом 0,047—0,053 МПа (350—400 мм рт. ст.) с частотой вращения барабана 0,25 мин . Срок службы фильтровальной ткани артикула 56023 составляет в среднем 1200 ч. В фильтрате содержится до 600 мг/л взвешенных веществ. Производительность ва-куум-фильтров составляет 17—22 кг/(м -ч) по сухому веществу осадка при влажности кека 78—80 %. [c.199]


    Эффективность удаления микроорганизмов из воды при коагуляции была предметом многочисленных исследовании. Установлено [84], что ири экспериментальном заражении речной воды коагуляция с помощью квасцов удаляет вирусы на 40%, кишечную палочку на 85%, а бактериофаги кишечной палочки — на 90%. Добавлением к воде 25 мг л сернокислого алюминия вирус Коксаки удаляется на 98,6%. Если эта доза сернокислого алюминия используется в двухэтапном процессе коагуляции, то при этом вода освобождается от вируса иа 99,9%, от кишечной палочки на 99,99% [75]. Этими исследованиями обнаружено, что процессы обеззараживания протекают параллельно с осветлением воды. При этом реагенты не инактивируют микроорганизмы, а лишь увлекают их в осадок. Эти наблюдения в известной мере проливают свет на механизм действия коагулянтов и других материалов, использующихся для очистки и обеззараживания воды. Все же механизм удаления вирусов недостаточно изучен. Известно [100], что энтеровирусы можно концентрировать на гидроокиси алюминия. Приведенные данные позволяют предполагать участие [c.88]

    Насосы-дозаторы с помощью переходных фонарей и муфт можно объединять в двухплунжерные и многоплунл ерные агрегаты, присоединяя последовательно регулирующие механизмы с гидроцилиндрами к одному электродвигателю. Такие дозаторные агрегаты (ДА) выпускают двух-, трехцилиндровыми, и они могут дозировать одновременно два или три реагента. Например, на станции очистки воды можно одновременно дозировать коагулянт, полиакриламид и известковое молоко. Насосы-дозаторы выпускают семи типоразмеров с подачей 2,5—100 л/ч и развиваемым напором 100—4000 м. [c.101]

    Установка УКОС предназначена для очистки буровых сточных вод коагуляцией и напорной флотацией. Буровые сточные воды после отстоя от крупных взвешенных частиц в амбаре-усреднителе насосом перекачивают в смеситель, в который до-заторным насосом подается 10%-ный водный раствор коагулянта — сернокислого алюминия. Одновременно в верхнюю часть смесителя самотеком поступает нейтрализатор — известковое молоко. После интенсивного перемешивания смесь поступает в водоворотну ю камеру, где образуются, укрупняются и оседают коагулированные хлопья. Более мелкие примеси всплывают и удаляются скребковым механизмом в карман для пены. Из коагулятора предварительно очищенная вода поступает в двухкамерный флотатор, куда ири помощи пасосноэжекторной обвязки и напорного бака подают в течение I мни водовоздушную смесь. Образовавшиеся при этом осадок и пену наиравляют в бак ир ема осадка, откуда давлением воздуха они передавливаются в отстойник осадка, где он обезвоживается до 95%. Отстой можно использовать для приготовления промывочной укидкости. Очищенная вода из кармана флотатора поступает в сборник для повторного использования. [c.200]

    Механизмы, снабженные редукторами, применяют также при очистке И в системе водоснабжения. Так, в некоторых отстойных бассейнах, в которых к воде добавляют коагулянт, имеются медленно движущиеся скребки с приводом от редуктора. Зимой в этом редукторе следует применять масло № 5 по классификации AGMA, а летом — масло № 6. Если привод насосов осуществляют при помощи редукторов, то смазывают их теми же маслами, но добавляют к ним мягкие противозадирные присадки. [c.454]


Смотреть страницы где упоминается термин Механизм очистки воды коагулянтами: [c.216]    [c.256]    [c.130]    [c.216]   
Смотреть главы в:

Коагулянты и флокулянты в процессах очистки воды -> Механизм очистки воды коагулянтами




ПОИСК





Смотрите так же термины и статьи:

Механизм коагулянтами

Очистка воды коагулянтами



© 2025 chem21.info Реклама на сайте