Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции электрофильного замещения ароматических соединений с повышенной реакционной способностью

    Большая доступность (по энергии) ВЗМО пятичленных гетероароматических соединений по сравнению с бензолом является причиной их повышенной реакционной способности, прежде всего в реакциях электрофильного ароматического замеш ения. Например, пиррол способен к реакциям замещения даже с такими слабыми электрофилами, как ионы арендиазония. [c.441]


    Наличие атомов азота как в кольцевой структуре, так и экзоциклических, конечно, влияет не только на диссоциацию, но и на реакционную способность соединений. Присутствие атомов азота определяет ход реакций электрофильного и нуклеофильного замещения. Например, два гетероциклических атома азота в пи-римидинах вызывают перераспределение электронной плотности в ароматическом кольце, так что С-5 обладает повышенной электронной плотностью по сравнению с остальными углеродными [c.111]

    Влияние заместителей в ароматическом ядре на его реакционную способность и ориентацию реагента при дальнейшем замещении остается при хлорировании таким же, как в других реакциях электрофильного замещения ароматических соединений. Элёктронодонорные группы (—ОН, —СНз) повышают способность к замещению и ориентируют галоген преимущественно в орто- и пара-положения, а электроноакцепторные заместители (—NO2, —СООН и др.) понижают реакционную способность и приводят к образованию в основном лета-изомеров. Среди других реакций электрофильного замещения хлорирование отличается повышенной чувствительностью к влиянию заместителей. Так, при некаталитической реакции в растворе уксусной кислоты толуол хлорируется в 343 раза, а пентаметилбензол — в 4-10 раз быстрее бензола. При хлорировании в присутствии хлорного железа эта величина [c.162]

    В данной главе мы рассмотрим направленность основных реакций электрофильного замещения тиофеновых соединений, несущих электронодонорные и электроноакцепторпые заместители. При этом особое впилгание будет уделено сильно дезактивирующим заместителям, способным частично или даже полностью преодолеть а-ориентирующий эффект гетероатома. Для оценки влияния гетероатома существенно прежде всего рассмотреть некоторые особенности химического поведения тиофепа и его замещенных, несущих ориентанты I рода. Эти особенности обусловлены не собственно ориентирующим эффектом заместителей, а повышенной реакционной способностью таких соединений, являющихся активированными ароматическими системами по отношению к э.чектрофильным агентам, и структурными факторами, в частности стабилизирующими а-комплексы. [c.20]

    Полученные данные по реакционной способности ароматических кремнийорганических соединений свидетельствуют о наличии ё—я-со-пряжения атома кремния и ароматического кольца в фенилсиланах, приводящего к значительному уменьшению нуклеофильности ароматического кольца. Повышенная реакционная способность к электрофиль-ному замещению триалкибензилсиланов является следствием большого электронодонорного характера группы Кз81СН2. Замена в такой группе трех алкильных радикалов на три атома хлора приводит к уменьшению ее электронодонорных свойств, а следовательно и реакционной способности в электрофильных реакциях соответствующих бензилсиланов. [c.130]


    Реакционная способность длительное время была главным критерием ароматичности. Уже через год после публикации Кекуле о структуре бензола и об ароматических соединениях как структурно подобных бензолу Эйленмейером было выдвинуто представление о химическом подобии ароматических соединений [12]. Поскольку для бензола характерны реакции электрофильного замещения, именно способность к этим реакциям считалась, а в ряде работ и до сих пор считается, признаком ароматичности. Склонность ароматических соединений к реакциям замещения, а не присоединения, Т ендендия сохранять тип обусловлена их повышенной термодинамической устойчивостью, т. е. пониженным уровнем свободной энергии. Однако реакционная способность зависит не только от уровня свободной энергии основного состояния субстрата, но определяется разностью уровней основного и переходного состояний — свободной энергией активации. Энергия же переходйого состояния в общем случае может изменяться в столь широких пределах, что изменение верхней границы барьера активации полностью перекроет влияние изменения нижней границы, зависящей от степени ароматичности. [c.41]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]

    Диаграммы зависимости потенциальной энергии от координаты реакции часто применялись для рассмотрения типичных реакций ароматического замещения. На рис. 1 изображен профиль энергии для одной из них в том виде, в каком его использовал Меландер [91], чтобы воспроизвести ход реакций водородного обмена. Места пересечений не сглажены, т. е. не учтен резонанс. Ветвь АБ соответствует увеличению потенциальной энергии, вызванному первоначальной поляризацией ароматической системы при образовании я-комплекса и образованием реакционноспособной замещающей частицы из больших по объему реагентов. Как показано на этой диаграмме, реакция проходит через точку, отвечающую комплексу Яь но будет ли он в действительности реализоваться как промежуточное соединение, зависит от реакционной способности реагирующих веществ. В случае очень сильного электрофильного агента начальное повышение потенциальной энергии будет выражаться кривой А Б -, в таком случае я-комплекс мог бы быть промежуточным соединением. По кривой ВГ начальная структура, подобная я-комплексу, превращается в а-комплекс с соответствующим повышением энергии вследствие потери энергии стабилизации ароматической системы. Кривая ДЕ соответствует комплексу а1. Пересечение ВГ и ДЕ соответствует стадии, которая определяет скорость всей реакции, если, как показано на рисунке, образовагше а-комплекса лимитирует скорость реакции. С правой стороны графика этц изменения повторяются, а выигрыш в потенциальной энергии обусловлен исключительно выигрышем стабильности при образовании ароматической системы. Образуется ли второй комплекс Яг, зависит, согласно Меландеру, от относительной основности атома углерода, находящегося в процессе изменения [c.465]


Смотреть страницы где упоминается термин Реакции электрофильного замещения ароматических соединений с повышенной реакционной способностью: [c.199]   
Смотреть главы в:

Реакции органических соединений -> Реакции электрофильного замещения ароматических соединений с повышенной реакционной способностью




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Повышенная реакционная способность

Реакции замещения

Реакции повышение

Реакция электрофильного

Электрофильное реакционная способность

Электрофильность

Электрофильные соединения

реакции реакционная способность



© 2025 chem21.info Реклама на сайте