Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система элементов и атомные спектры

    При расшифровке спектров можно различить линии, возни-)сающие при возбуждении электронейтральных атомов, однократно ионизированных атомов (первичный ионный спектр) или двукратно ионизированных атомов (вторичный ионный спектр). Для возбуждения спектров нейтральных атомов достаточно энергии дугового разряда, поэтому эти спектры раньше упрощенно называли дуговыми. Б отличие от них спектры ионов, обычно возбуждаемые действием конденсированной искры, называли искровыми спектрами. Имея определенные формулы серий (см. разд. 5.1.3), можно установить взаимосвязь атомных и ионных спектров, описываемую спектроскопическим законом смещения А. Зоммерфельда и В. Косселя, который гласит, что спектр, испускаемый нейтральными атомами какого-либо элемента, подобен спектру, испускаемому однократно ионизированными атомами элемента, стоящего за ним в Периодической системе, а также спектру, испускаемому двукратно ионизированными атомами элемента, стоящего через один элемент за ним в Периодической системе. [c.371]


    Индий открыт в 1863 г. Рейхом и Рихтером при изучении сфалеритов по характерной интенсивно-синей линии в спектре. Индий относится к третьей группе периодической системы элементов, его порядковый номер 49, атомный вес 114,8. Природный индий представляет смесь 95,77% изотопа и 4,23% изотопа [83, 251]. Известны изотопы индия с массовыми числами 107, 108, 109, 110, 111, 112, ИЗ, 114, 115, 116, 117, 118 и 119 [57, 83]. [c.5]

    Основные научные работы посвящены изучению атомного ядра и физическому обоснованию периодической системы элементов. Открыл (1914) непрерывный спектр энергии Р-излучения. Экспериментально подтвердил (1920) равенство заряда ядра порядковому номеру элемента. Совместно с Резерфордом изучал (1921) искусственное превращение элемептов под действием а-частиц установил, что нри действии а-частиц на ядра бора, фтора, натрия, алюминия и фосфора происходит выделение быстрых атомов водорода. Открыл [c.555]

    В многоэлектронных атомах для характеристики состояния электрона большое значение имеет принцип, сформулированный Паули в 1925 г. на основе периодической системы элементов Д. И. Менделеева и анализа атомных спектров. Он называется принципом Паули в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел. [c.42]

    В 1913 г. существовали три пары элементов, которые по своим химическим и физическим свойствам не могли быть помещены в ряд в порядке увеличения атомных весов. Это были аргон и калий, кобальт и никель, теллур и иод. С помощью рентгеновских спектров было установлено, что хотя они и нарушают общий порядок расположения элементов по возрастанию атомных весов, но расположены правильно в отношении порядкового номера. Это показало, что порядковый номер имеет большее значение, чем атомный вес, и, возможно, является ключом к пониманию периодической системы элементов. [c.90]

    Молекулярный изотопный спектральный анализ в ря 1е случаев имеет существенные преимущества перед атомным, так как изотопические смещения в молекулярных спектрах во много раз превышают изотопические смещения в атомных спектрах, особенно для средней части периодической системы элементов, где изотопическое смещение в атомных спектрах весьма мало. [c.140]

    АТОМНЫЕ СПЕКТРЫ и ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ ГЛ. IV [c.224]

    При обсуждении вопроса об образовании более тяжелых элементов из элементарных частпц мы в дальнейшем увидим, что с возрастанием атомного веса периодически изменяются только те свойства, которые определяются способом расположения внешних электронов, наиример химические свойства. Свойства, зависящие только от полного числа электронов, например рентгеновские спектры, но показывают таких изменений. Более точное и подробное описание периодичности химических свойств является предметом неорганической химии. Здесь следует отметить только наиболее важные факты. Из девяти грунн периодической системы элементов семь подразделяются на подгруппы А и Л (табл. 1). Благодаря этому достигается наиболее удобная форма периодической классификации. Полезность такого подразделения групп можно лучше всего показать на примерах. Во второй группе разница свойств [c.187]


    Варшаньи и Ладик [111] считают, что представление об S0-и ЗОг-связях как о донорно-акцепторных (семиполярных) не соответствует действительности. Анализируя ультрафиолетовые спектры дифенилсульфона и бензолсульфоновой кислоты, они пришли к заключению, что в сульфоксидах, сульфонах и сульфоновых кислотах сера соединена с кислородом двойной связью. Вокруг атома серы образуется электронный децет (в сульфоксидах) или додецет (в сульфонах и сульфоновых кислотах). Эти конфигурации электронов возможны, так как, начиная с третьего периода периодической системы элементов, образование октета не является необходимым условием возникновения связей. Наличие двойной связи в сульфонах подтверждается также результатами электронографических измерений в дифенилсульфоне сумма атомных радиусов серы и кислорода равна 1,44 Л, для двойной связи серы с кислородом это рас- [c.153]

    Год 1913 оказался знаменательным в истории редкоземельных элементов — это был год опубликования работ талантливого английского физика Мозели. Ученому удалось сфор.мулировать закон, который связывал частоту спектральных линий характеристического (свойственного атомам данного элемента) рентгеновского излучения с порядковым номером элемента. Формулировка этого закона на первый взгляд ни о чем не говорила химику квадратный корень из частот характеристических линий рентгеновских спектров различных элементов есть линейная функция натурального ряда чисел N (т. е. М— =1, 2, 3,4и т. д.). В чем же заключался физический смысл этого ряда Смысл его был понят на основании представлений о месте элел1ента в периодической системе. иМ увеличивается от атому к атому (т. е. от элемента к элементу,—Д. Т.) всегда на одну единицу... N есть то же самое число, равное номеру места, занимаемого элементом в периодической системе. Этот атомный номер или порядковое число для Н есть 1, для Не—2 и т. д. ,— писал Мозели. Значит, найденная Мозели величина оказывалась функцией порядкового номера элемента в системе. Последовательность элементов в таблице Менделеева полностью совпала с рядом Мозели. В том же году Ван-ден-Брук и Бор отождествили число N с зарядом ядра Z. [c.79]

    В течение следующих 10 лет этот новый газ был предметом многочисленных исследований, в результате которых стало ясно, что новое вещество получается при распаде радия путем потери одной а-частицы на элементарный акт распада. Было показано также, что это вещество химически инертно и что его спектр подобен спектру ксенона и других инертных газов, несколько ранее открытых Рамзаем. Розерфорд и Содди [R57, R47] показали, что если пропускать эманацию радия через платиновую трубку, нагретую до белого каления, и конденсировать газ при —150 С, то ее активность при этом не меняется. Эти исследователи [R53] выделили некоторое количество чистой эманации и показали, что этот газ подчиняется закону Бойля. В спектре эманации радия было обнаружено несколько новых линий. Рамзай и Содди [R55] открыли, что при радиоактивном распаде эманации получается гелий. Еще более тщательное исследование спектра эманации, было произведено Рамзаем и Колли [R51]. Плотность газа была определена эффузионным методом [Р55, D26], а также методом прямого взвешивания с использованием микровесов [R52, 057]. Если считать газ одноатомным, то средний атомный вес, вычисленный из данных по плотности, оказывается равным 222,4. Эта величина хорошо согласуется с теоретически вычисленным атомным весом элемента 86, образующегося из радия (Ra226) путем потери а-частицы. Это указывает на то, что новому элементу следует приписать атомный номер 86 и что он находится в периодической системе элементов на последнем месте в группе инертных газов (нулевой группе). [c.166]

    В доквантово-механический период общий метод исследования задач теории атомных спектров состоял в следующем вычисления делались на основе некоторой модели при помощи классической механики, а затем делалась попытка изменить формулы так, чтобы эти изменения были незначительными для больших квантовых чисел, однако характер их давал бы возможность достигнуть соответствия f с экспериментом при малых квантовых числах. Следует удивляться тому коли-честву результатов современной теории линейчатых спектров, которое было получено этим путем. Существенные достижения здесь принадлежат Паули, Гейзенбергу, Гунду и Ресселю. Была построена векторная модель сложных атомов, в которой основную роль играло квантование моментов количества. > движения отдельных электронных орбит и их векторной суммы. К этому же V периоду относится открытие Паули правила запрета, согласно которому два электрона в атоме не могут обладать одной и той же совокупностью квантовых чисел. После появления квантовой механики принцип Паули естественным образом вошел в теорию. Однако этот принцип сыграл еще большую роль как эмпирическое правило, в особенности благодаря работам Гунда, посвященным строению сложных спектров, и развитию теории периодической системы элементов, начатую Бором. [c.17]


    На рис. 8 представлено типичное семейство кривых распределения по 9нергиям атомов серебра, распыляемых с поверхности (110) ионами ртути для различных энергий ионов. На рис. 9 сравниваются энергетические спектры четырех материалов из одного периода периодической системы, бомбардируемых ионами Кг+ с энергией 1200 эВ. Интересно отметить, что НЬ. Р(1 и А , являющиеся в периодической системе элементов соседями и имеющие почти одинаковые атомные веса и одинаковую кристаллическую структуру, заметно отличаются как по энергетическому спектру распылен- [c.380]


Смотреть страницы где упоминается термин Периодическая система элементов и атомные спектры: [c.24]    [c.24]    [c.70]    [c.19]    [c.214]    [c.12]    [c.290]   
Смотреть главы в:

Методы спектрального и химико-спектрального анализа -> Периодическая система элементов и атомные спектры




ПОИСК





Смотрите так же термины и статьи:

Периодическая система

Периодическая система элементо

Периодическая система элементов

Спектры атомные

Спектры элементов

Элемент периодическая



© 2025 chem21.info Реклама на сайте